Assessing bioenergetic functions from isolated mitochondria in Drosophila melanogaster

Main Article Content

Wen C. Aw
Rijan Bajracharya
Samuel G. Towarnicki
J William O. Ballard

Keywords

Drosophila, mitochondrial isolation, bioenergetics, seahorse XF, complex I, larvae

Abstract

Mitochondria are involved in generating more than 90 percent of cellular energy and are responsible for many cellular processes such as metabolism, cell signalling, apoptosis and ageing. Currently, there are a number of different experimental approaches employed to measure mitochondrial health and function. Here, we demonstrate a novel approach that quantifies substrate induced mitochondrial respiration from Drosophila. This protocol is optimized for mitochondria isolated from third instar larvae, and can also be used for mitochondria isolated from adult thoraces. This procedure outlines how to perform high throughput and high resolution mitochondria specific measurements for state II, state III, state IVO respiration and residual oxygen consumption.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
Abstract 65 | HTML Downloads 250 PDF Downloads 298

References

Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T, Wang J, et al. A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab. 2014;20: 840–55. doi:10.1016/j.cmet.2014.10.005

2. Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J. 2011;435: 297–312. doi:10.1042/BJ20110162

3. Boutagy NE, Rogers GW, Pyne ES, Ali MM, Hulver MW, Frisard MI. Using Isolated Mitochondria from Minimal Quantities of Mouse Skeletal Muscle for High throughput Microplate Respiratory Measurements. J Vis Exp. 2015; e53216. doi:10.3791/53216

4. Rogers GW, Brand MD, Petrosyan S, Ashok D, Elorza AA, Ferrick DA, et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One. Public Library of Science; 2011;6: e21746. doi:10.1371/journal.pone.0021746

5. Das KC, Muniyappa H. Age-dependent mitochondrial energy dynamics in the mice heart: role of superoxide dismutase-2. Exp Gerontol. 2013;48: 947–59. doi:10.1016/j.exger.2013.06.002

6. Kenwood BM, Weaver JL, Bajwa A, Poon IK, Byrne FL, Murrow BA, et al. Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Mol Metab. 2014;3: 114–23. doi:10.1016/j.molmet.2013.11.005

7. Zhang J, Nuebel E, Wisidagama DRR, Setoguchi K, Hong JS, Van Horn CM, et al. Measuring energy metabolism in cultured cells, including human pluripotent stem cells and differentiated cells. Nat Protoc. Nature Publishing Group; 2012;7: 1068–85. doi:10.1038/nprot.2012.048

8. Joseph A-M, Adhihetty PJ, Buford TW, Wohlgemuth SE, Lees HA, Nguyen LM-D, et al. The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals. Aging Cell. 2012;11: 801–9. doi:10.1111/j.1474-9726.2012.00844.x

9. Kuznetsov A V, Veksler V, Gellerich FN, Saks V, Margreiter R, Kunz WS. Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat Protoc. 2008;3: 965–76. doi:10.1038/nprot.2008.61

10. Pesta D, Gnaiger E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol. 2012;810: 25–58. doi:10.1007/978-1-61779-382-0_3

11. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol. 2007;292: C125–36. doi:10.1152/ajpcell.00247.2006

12. Gerencser AA, Neilson A, Choi SW, Edman U, Yadava N, Oh RJ, et al. Quantitative microplate-based respirometry with correction for oxygen diffusion. Anal Chem. 2009;81: 6868–78. doi:10.1021/ac900881z

13. Schuh RA, Jackson KC, Khairallah RJ, Ward CW, Spangenburg EE. Measuring mitochondrial respiration in intact single muscle fibers. Am J Physiol Regul Integr Comp Physiol. 2012;302: R712–9. doi:10.1152/ajpregu.00229.2011

14. Nicholls DG. The physiological regulation of uncoupling proteins. Biochim Biophys Acta. 2006;1757: 459–66. doi:10.1016/j.bbabio.2006.02.005