CRISPR Explorer: A fast and intuitive tool for designing guide RNA for genome editing

Main Article Content

Kenian Chen
Yi Jin
Yin C. Lin

Keywords

CRISPR-Cas9, guide RNA design, open-source web application

Abstract

The RNA-guided CRISPR-Cas9 (clustered, regularly interspaced, short palindromic repeat-CRISPR-associated 9) system has become a revolutionary technology for targeted genome engineering. The critical step of this technology requires the design of a highly specific and efficient guide RNA (gRNA) that will guide the Cas9 nuclease to the complementary DNA target sequence. CRISPR-Explorer is a new and user-friendly web server for selecting optimal CRISPR sites. It implements the latest scoring schemes of gRNA specificity and efficiency based on published empirical studies. The gRNA design results are generated instantly, thus removing wait times. The user can visualize the high-quality gRNAs with detailed design information through an interactive genome browser. Furthermore, the user can define and specify the parameters for gRNA selection in the Batch Design mode, which recognizes various input formats. CRISPR Explorer is freely accessible at: http://crisprexplorer.org.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
Abstract 23 | HTML Downloads 184 PDF Downloads 119

References

1. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, et al. (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343: 84-87.
2. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343: 80-84.
3. Zhou Y, Zhu S, Cai C, Yuan P, Li C, et al. (2014) High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509: 487-491.
4. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, et al. (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602-607.
5. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, et al. (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468: 67-71.
6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.
7. Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, et al. (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39: 9275-9282.
8. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, et al. (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154: 442-451.
9. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30: 1473-1475.
10. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31: 230-232.
11. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, et al. (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31: 822-826.
12. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, et al. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31: 827-832.
13. Xu H, Xiao T, Chen CH, Li W, Meyer CA, et al. (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25: 1147-1157.
14. Liu H, Wei Z, Dominguez A, Li Y, Wang X, et al. (2015) CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics 31: 3676-3678.
15. Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, et al. (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nature Methods 12: 982-988.
16. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, et al. (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351: 84-88.
17. Marco-Sola S, Sammeth M, Guigo R, Ribeca P (2012) The GEM mapper: fast, accurate and versatile alignment by filtration. Nat Methods 9: 1185-1188.
18. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32: 279-284.
19. Li H (2011) Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27: 718-719.
20. Zhou X, Maricque B, Xie M, Li D, Sundaram V, et al. (2011) The Human Epigenome Browser at Washington University. Nat Methods 8: 989-990.