Total proteome turbidity assay for tracking global protein aggregation in the natural cellular environment

Main Article Content

Merav D. Shmueli
Noa Hizkiahou
Sivan Peled
Ehud Gazit
Daniel Segal

Keywords

turbidity, protein aggregation, cancer, Alzheimer, VHL, ALS, parkinson's disease

Abstract

Proteome homeostasis is crucial for optimal cellular function and survival in the face of various stressful impacts. This entails preservation of a balance between protein synthesis, folding, degradation, and trafficking collectively termed proteostasis. A hallmark of proteostasis failure, which underlies various diseases, is enhanced misfolding and aggregation of proteins. Here we adapted the measurement of protein turbidity, which is commonly used to evaluate aggregation of single purified proteins, for monitoring propensity for aggregation of the entire soluble cellular proteome incubated in vitro for several hours. We show that over-expression of an aggregation-prone protein or applying endoplasmic-reticulum (ER) stress to either cells in culture or to the intact organism, Drosophila, enhances the rise in turbidity of the global soluble proteome compared to untreated cells. Additionally, given that Alzheimer’s disease (AD) is known to involve ER stress and aggregation of proteins, we demonstrate that the soluble fraction of brain extracts from AD patients displays markedly higher rise of global proteome turbidity than in healthy counterparts. This assay could be valuable for various biological, medical and biotechnological applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
Abstract 45 | HTML Downloads 191 PDF Downloads 222 Supplementary information Downloads 0

References

1. Morimoto RI, Cuervo AM. Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci. 2014;69 Suppl 1:S33-8. Epub 2014/05/17. doi: 10.1093/gerona/glu049gerona/glu049 [pii]. PubMed PMID: 24833584; PubMed Central PMCID: PMC4022129.
2. Labbadia J, Morimoto RI. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435-64. Epub 2015/03/19. doi: 10.1146/annurev-biochem-060614-033955. PubMed PMID: 25784053; PubMed Central PMCID: PMC4539002.
3. Gow A, Sharma R. The unfolded protein response in protein aggregating diseases. Neuromolecular Med. 2003;4(1-2):73-94. Epub 2003/10/07. doi: NMM:4:1-2:73 [pii]10.1385/NMM:4:1-2:73. PubMed PMID: 14528054.
4. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 2009;78:959-91. Epub 2009/03/21. doi: 10.1146/annurev.biochem.052308.114844. PubMed PMID: 19298183.
5. Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med. 2004;10 Suppl:S10-7. Epub 2004/07/24. doi: 10.1038/nm1066nm1066 [pii]. PubMed PMID: 15272267.
6. Shmueli MD, Schnaider L, Rosenblum D, Herzog G, Gazit E, Segal D. Structural Insights into the Folding Defects of Oncogenic pVHL Lead to Correction of Its Function In Vitro. PloS one. 2013;8(6):e66333. Epub 2013/07/11. doi: 10.1371/journal.pone.0066333PONE-D-13-16668 [pii]. PubMed PMID: 23840444; PubMed Central PMCID: PMC3688787.
7. Ang HC, Joerger AC, Mayer S, Fersht AR. Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains. The Journal of biological chemistry. 2006;281(31):21934-41. Epub 2006/06/07. doi: 10.1074/jbc.M604209200. PubMed PMID: 16754663.
8. Kiese S, Papppenberger A, Friess W, Mahler HC. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. Journal of pharmaceutical sciences. 2008;97(10):4347-66. Epub 2008/02/02. doi: 10.1002/jps.21328S0022-3549(16)32750-2 [pii]. PubMed PMID: 18240293.
9. Van Buren N, Rehder D, Gadgil H, Matsumura M, Jacob J. Elucidation of two major aggregation pathways in an IgG2 antibody. Journal of pharmaceutical sciences. 2009;98(9):3013-30. Epub 2008/08/06. doi: 10.1002/jps.21514S0022-3549(16)33072-6 [pii]. PubMed PMID: 18680168.
10. Krishnan S, Chi EY, Webb JN, Chang BS, Shan D, Goldenberg M, et al. Aggregation of granulocyte colony stimulating factor under physiological conditions: characterization and thermodynamic inhibition. Biochemistry. 2002;41(20):6422-31. Epub 2002/05/16. doi: bi012006m [pii]. PubMed PMID: 12009905.
11. Kelly JW. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol. 1998;8(1):101-6. Epub 1998/03/31. doi: S0959-440X(98)80016-X [pii]. PubMed PMID: 9519302.
12. Cohen SI, Vendruscolo M, Dobson CM, Knowles TP. From macroscopic measurements to microscopic mechanisms of protein aggregation. J Mol Biol. 2012;421(2-3):160-71. Epub 2012/03/13. doi: 10.1016/j.jmb.2012.02.031S0022-2836(12)00203-3 [pii]. PubMed PMID: 22406275.
13. Mahler HC, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. Journal of pharmaceutical sciences. 2009;98(9):2909-34. Epub 2008/10/01. doi: 10.1002/jps.21566S0022-3549(16)33077-5 [pii]. PubMed PMID: 18823031.
14. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 2002;416(6880):507-11. Epub 2002/04/05. doi: 10.1038/416507a416507a [pii]. PubMed PMID: 11932737.
15. McKinley MP, Bolton DC, Prusiner SB. A protease-resistant protein is a structural component of the scrapie prion. Cell. 1983;35(1):57-62. Epub 1983/11/01. doi: 0092-8674(83)90207-6 [pii]. PubMed PMID: 6414721.
16. Xu J, Reumers J, Couceiro JR, De Smet F, Gallardo R, Rudyak S, et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature chemical biology. 2011;7(5):285-95. Epub 2011/03/30. doi: 10.1038/nchembio.546nchembio.546 [pii]. PubMed PMID: 21445056.
17. Nubling G, Bader B, Levin J, Hildebrandt J, Kretzschmar H, Giese A. Synergistic influence of phosphorylation and metal ions on tau oligomer formation and coaggregation with alpha-synuclein at the single molecule level. Mol Neurodegener. 2012;7:35. Epub 2012/07/25. doi: 10.1186/1750-1326-7-35
#N/A [pii]. PubMed PMID: 22824345; PubMed Central PMCID: PMC3472288.
18. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081-6. Epub 2011/11/26. doi: 10.1126/science.1209038334/6059/1081 [pii]. PubMed PMID: 22116877.
19. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 2008;319(5865):916-9. Epub 2008/02/16. doi: 10.1126/science.1141448319/5865/916 [pii]. PubMed PMID: 18276881.
20. Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science. 2006;311(5766):1471-4. Epub 2006/02/14. doi: 1124514 [pii]10.1126/science.1124514. PubMed PMID: 16469881.
21. Chaudhuri R, Cheng Y, Middaugh CR, Volkin DB. High-throughput biophysical analysis of protein therapeutics to examine interrelationships between aggregate formation and conformational stability. AAPS J. 2014;16(1):48-64. Epub 2013/11/01. doi: 10.1208/s12248-013-9539-6. PubMed PMID: 24174400; PubMed Central PMCID: PMC3889527.
22. Hoozemans JJ, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P, et al. The unfolded protein response is activated in Alzheimer's disease. Acta Neuropathol. 2005;110(2):165-72. Epub 2005/06/24. doi: 10.1007/s00401-005-1038-0. PubMed PMID: 15973543.
23. Ittner LM, Gotz J. Amyloid-beta and tau--a toxic pas de deux in Alzheimer's disease. Nat Rev Neurosci. 2011;12(2):65-72. Epub 2011/01/05. doi: 10.1038/nrn2967nrn2967 [pii]. PubMed PMID: 21193853.
24. Singh C, Mahoney M. UAS-APP and APP-based constructs and insertions from Vitruvean. 2011.
25. Groth AC, Fish M, Nusse R, Calos MP. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. 2004;166(4):1775-82. Epub 2004/05/06. doi: 166/4/1775 [pii]. PubMed PMID: 15126397; PubMed Central PMCID: PMC1470814.
26. Sullivan W, Ashburner M, Hawley RS. Drosophila protocols. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2000. xiv + 697 pp. p.
27. Brown RB, Audet J. Current techniques for single-cell lysis. J R Soc Interface. 2008;5 Suppl 2:S131-8. doi: 10.1098/rsif.2008.0009.focus. PubMed PMID: 18426769; PubMed Central PMCID: PMCPMC2504493.
28. Medina D, Moskowitz N, Khan S, Christopher S, Germino J. Rapid purification of protein complexes from mammalian cells. Nucleic Acids Res. 2000;28(12):E61. PubMed PMID: 10871384; PubMed Central PMCID: PMCPMC102746.
29. Ericsson C, Nister M. Protein extraction from solid tissue. Methods Mol Biol. 2011;675:307-12. doi: 10.1007/978-1-59745-423-0_17. PubMed PMID: 20949398.
30. Ericsson C, Franzen B, Nister M. Frozen tissue biobanks. Tissue handling, cryopreservation, extraction, and use for proteomic analysis. Acta Oncol. 2006;45(6):643-61. doi: 10.1080/02841860600818047. PubMed PMID: 16938807.
31. Mahoney WC, Duksin D. Biological activities of the two major components of tunicamycin. The Journal of biological chemistry. 1979;254(14):6572-6. Epub 1979/07/25. PubMed PMID: 447736.
32. Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993;118(2):401-15. Epub 1993/06/01. PubMed PMID: 8223268.
33. Gelbart ME, Kuroda MI. Drosophila dosage compensation: a complex voyage to the X chromosome. Development. 2009;136(9):1399-410. Epub 2009/04/14. doi: 10.1242/dev.029645136/9/1399 [pii]. PubMed PMID: 19363150; PubMed Central PMCID: PMC2674252.
34. Malnasi-Csizmadia A, Hegyi G, Tolgyesi F, Szent-Gyorgyi AG, Nyitray L. Fluorescence measurements detect changes in scallop myosin regulatory domain. Eur J Biochem. 1999;261(2):452-8. PubMed PMID: 10215856.
35. Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993;260(5112):1317-20. Epub 1993/05/28. PubMed PMID: 8493574.
36. Sutovsky H, Gazit E. The von Hippel-Lindau tumor suppressor protein is a molten globule under native conditions: implications for its physiological activities. The Journal of biological chemistry. 2004;279(17):17190-6. Epub 2004/02/14. doi: 10.1074/jbc.M311225200. PubMed PMID: 14963040.
37. Bangiyeva V, Rosenbloom A, Alexander AE, Isanova B, Popko T, Schoenfeld AR. Differences in regulation of tight junctions and cell morphology between VHL mutations from disease subtypes. BMC Cancer. 2009;9:229. Epub 2009/07/16. doi: 10.1186/1471-2407-9-229
1471-2407-9-229 [pii]. PubMed PMID: 19602254; PubMed Central PMCID: PMC2722669.
38. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130-3. Epub 2006/10/07. doi: 314/5796/130 [pii]10.1126/science.1134108. PubMed PMID: 17023659.
39. Mackenzie IR, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E, et al. A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol. 2011;122(1):111-3. Epub 2011/06/07. doi: 10.1007/s00401-011-0845-8. PubMed PMID: 21644037; PubMed Central PMCID: PMC3285143.
40. Guo W, Chen Y, Zhou X, Kar A, Ray P, Chen X, et al. An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol. 2011;18(7):822-30. Epub 2011/06/15. doi: 10.1038/nsmb.2053nsmb.2053 [pii]. PubMed PMID: 21666678; PubMed Central PMCID: PMC3357956.
41. Chaudhuri TK, Paul S. Protein-misfolding diseases and chaperone-based therapeutic approaches. The FEBS journal. 2006;273(7):1331-49. Epub 2006/05/13. doi: EJB5181 [pii]10.1111/j.1742-4658.2006.05181.x. PubMed PMID: 16689923.