Elucidating endotoxin-biomolecule interactions with FRET: extending the frontiers of their supramolecular complexation

Main Article Content

Eugene M. Obeng
Elvina C. Dullah
Nur Syahadatain Abdul Razak
Michael K. Danquah
Cahyo Budiman
Clarence M. Ongkudon

Keywords

biomolecular interaction, endotoxicity, endotoxin, FRET, lipopolysaccharide

Abstract

Endotoxin has been one of the topical chemical contaminants of major concern to researchers, especially in the field of bioprocessing. This major concern of researchers stems from the fact that the presence of Gram-negative bacterial endotoxin in intracellular products is unavoidable and requires complex downstream purification steps. For instance, endotoxin interacts with recombinant proteins, peptides, antibodies and aptamers and these interactions have formed the foundation for most biosensors for endotoxin detection. It has become imperative for researchers to engineer reliable means/techniques to detect, separate and remove endotoxin, without compromising the quality and quantity of the end-product. However, the underlying mechanism involved during endotoxin-biomolecule interaction is still a gray area. The use of quantitative molecular microscopy that provides high resolution of biomolecules is highly promising, hence, may lead to the development of improved endotoxin detection strategies in biomolecule preparation. Förster resonance energy transfer (FRET) spectroscopy is one of the emerging most powerful tools compatible with most super-resolution techniques for the analysis of molecular interactions. However, the scope of FRET has not been well-exploited in the analysis of endotoxin-biomolecule interaction. This article reviews endotoxin, its pathophysiological consequences and the interaction with biomolecules. Herein, we outline the common potential ways of using FRET to extend the current understanding of endotoxin-biomolecule interaction with the inference that a detailed understanding of the interaction is a prerequisite for the design of strategies for endotoxin identification and removal from protein milieus.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
Abstract 39 | HTML Downloads 421 PDF Downloads 194

References

1. Lopes AM, Magalhaes PO, Mazzola PG, Rangel-Yagui CO, de Carvalho JCM, Penna TCV, et al. Green fluorescent protein extraction and LPS removal from Escherichia coli fermentation medium using aqueous two-phase micellar system. Sep Purif Technol. 2011;81: 339–346. doi:10.1016/j.seppur.2011.07.043
2. Das AP, Kumar PS, Swain S. Recent advances in biosensor based endotoxin detection. Biosens Bioelectron. Elsevier; 2014;51: 62–75. doi:10.1016/j.bios.2013.07.020
3. Chen X, Howe J, Andra J, Rossle M, Richter W, Paula A, et al. Biophysical analysis of the interaction of granulysin-derived peptides with enterobacterial endotoxins. Biochim Biophys Acta. 2007;1768: 2421–2431. doi:10.1016/j.bbamem.2007.05.001
4. Andra J, Garidel P, Majerle A, Jerala R, Ridge R, Paus E, et al. Biophysical characterization of the interaction of Limulus polyphemus endotoxin neutralizing protein with lipopolysaccharide. Eur J Biochem. 2004;271: 2037–2046. doi:10.1111/j.1432-1033.2004.04134.x
5. Kang Y, Luo RG. Chromatographic removal of endotoxin from hemoglobin preparations. J Chromatogr A. 1998;809: 13–20. doi:10.1016/S0021-9673(98)00137-X
6. Ongkudon CM, Chew JH, Liu B, Danquah MK. Chromatographic Removal of Endotoxins: A Bioprocess Engineer’s Perspective. ISRN Chromatogr. 2012;2012: 1–9. doi:10.5402/2012/649746
7. Petsch D, Anspach FB. Endotoxin removal from protein solutions. J Biotechnol. 2000;76: 97–119. Available: http://www.ncbi.nlm.nih.gov/pubmed/10656326
8. Magalhaes PO, Lopes AM, Mazzola PG, Rangel-Yagui C, Penna TC V, Pessoa A. Methods of endotoxin removal from biological preparations: a review. J Pharm Pharm Sci a Publ Can Soc Pharm Sci Societe Can des Sci Pharm. 2007;10: 388–404. Available: http://www.ualberta.ca/~csps/JPPS10_3/MS_996/MS_996.html
9. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy, Jr. RC, et al. A comprehensive classification system for lipids. J Lipid Res. 2005;46: 839–862. doi:10.1194/jlr.E400004-JLR200
10. Bos MP, Tommassen J. Biogenesis of the Gram-negative bacterial outer membrane. Curr Opin Microbiol. 2004;7: 610–616. doi:10.1016/j.mib.2004.10.011
11. Kim S, Su W, Cho M, Lee Y, Choe W. Harnessing aptamers for electrochemical detection of endotoxin. Anal Biochem. Elsevier Inc.; 2012;424: 12–20. doi:10.1016/j.ab.2012.02.016
12. Schmidt H, Hansen G, Singh S, Hanuszkiewicz A, Lindner B, Fukase K, et al. Structural and mechanistic analysis of the membrane-embedded glycosyltransferase WaaA required for lipopolysaccharide synthesis. Proc Natl Acad Sci. 2012;109: 6253–6258. doi:10.1073/pnas.1119894109
13. Raetz CR, Reynolds CM, Trent MS, Bishop RE. Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem. 2007;76: 295–329. doi:10.1146/annurev.biochem.76.010307.145803
14. Reynolds CM, Raetz CRH. Replacement of Lipopolysaccharide with Free Lipid A Molecules in Escherichia coli Mutants Lacking All Core Sugars. Biochemistry. 2009;48: 9627–9640. doi:10.1021/bi901391g
15. Klein G, Lindner B, Brabetz W, Brade H, Raina S. Escherichia coli K-12 Suppressor-free Mutants Lacking Early Glycosyltransferases and Late Acyltransferases: Minimal Lipopolysaccharide Structure and Induction of Envelope Stress Response. J Biol Chem. 2009;284: 15369–15389. doi:10.1074/jbc.M900490200
16. Brade H, Opal SM, Vogel SN, Morrison DC. Endotoxin in health and disease. New York: Marcel Dekker Inc.; 1999.
17. Wang X, Quinn PJ. Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog Lipid Res. Elsevier Ltd; 2010;49: 97–107. doi:10.1016/j.plipres.2009.06.002
18. Beutler B. Endotoxin, toll-like receptor 4, and the afferent limb of innate immunity. Curr Opin Microbiol. 2000;3: 23–28. doi:10.1016/S1369-5274(99)00046-6
19. Chen L, Mozier N. Comparison of Limulus amebocyte lysate test methods for endotoxin measurement in protein solutions. J Pharm Biomed Anal. Elsevier B.V.; 2013;80: 180–5. doi:10.1016/j.jpba.2013.03.011
20. Su W, Ding X. Methods of Endotoxin Detection. J Lab Autom. 2015;20: 354–64. doi:10.1177/2211068215572136
21. Gutsmann T, Seydel U. Impact of the glycostructure of amphiphilic membrane components on the function of the outer membrane of Gram-negative bacteria as a matrix for incorporated channels and a target for antimicrobial peptides or proteins. Eur J Cell Biol. Elsevier; 2010;89: 11–23. doi:10.1016/j.ejcb.2009.10.011
22. Raetz CRH, Whitfield C. Lipopolysaccharide Endotoxin. Annu Rev Biochem. 2002;71: 635–700. doi:10.1146/annurev.biochem.71.110601.135414
23. Gronow S, Xia G, Brade H. Glycosyltransferases involved in the biosynthesis of the inner core region of different lipopolysaccharides. Eur J Cell Biol. Elsevier; 2010;89: 3–10. doi:10.1016/j.ejcb.2009.10.002
24. Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. Biochem. 2010;75: 383–404. doi:10.1134/S0006297910040012
25. Wong KH, Moss CW, Hochstein DH, Arko RJ, Schalla WO. “Endotoxicity” of the Legionnaires’ Disease Bacterium. Ann Intern Med. 1979;90: 624. doi:10.7326/0003-4819-90-4-624
26. Martirosyan A, Ohne Y, Degos C, Gorvel L, Moriyón I, Oh S, et al. Lipopolysaccharides with Acylation Defects Potentiate TLR4 Signaling and Shape T Cell Responses. Moreno E, editor. PLoS One. 2013;8: e55117. doi:10.1371/journal.pone.0055117
27. Klein G, Lindner B, Brade H, Raina S. Molecular Basis of Lipopolysaccharide Heterogeneity in Escherichia coli: Envelope Stress-Responsive Regulators Control the Incorporation Of Glycoforms with a Third 3-Deoxy-α-d-Manno-Oct-2-Ulosonic Acid and Rhamnose. J Biol Chem. 2011;286: 42787–42807. doi:10.1074/jbc.M111.291799
28. Lodowska J, Wolny D, Jaworska-kik M, Kurkiewicz S, Dzier Z, We L. The cientific WorldJOURNAL The Chemical Composition of Endotoxin Isolated from Intestinal Strain of Desulfovibrio desulfuricans. 2012;2012. doi:10.1100/2012/647352
29. Klein G, Kobylak N, Lindner B, Stupak A, Raina S. Assembly of Lipopolysaccharide in Escherichia coli Requires the Essential LapB Heat Shock Protein. J Biol Chem. 2014;289: 14829–14853. doi:10.1074/jbc.M113.539494
30. Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, Young K, et al. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol. 1999;31: 833–844. doi:10.1046/j.1365-2958.1999.01221.x
31. Young K, Silver LL, Bramhill D, Cameron P, Eveland SS, Raetz CRH, et al. The envA Permeability/Cell Division Gene of Escherichia coli Encodes the Second Enzyme of Lipid A Biosynthesis: UDP-3-O-(R-3-HYDROXYMYRISTOYL)-N-ACETYLGLUCOSAMINE DEACETYLASE. J Biol Chem. 1995;270: 30384–30391. doi:10.1074/jbc.270.51.30384
32. Klein G, Stupak A, Biernacka D, Wojtkiewicz P, Lindner B, Raina S. Multiple Transcriptional Factors Regulate Transcription of the rpoE Gene in Escherichia coli under Different Growth Conditions and When the Lipopolysaccharide Biosynthesis Is Defective. J Biol Chem. 2016;291: 22999–23019. doi:10.1074/jbc.M116.748954
33. Wang X, Quinn PJ. Endotoxins: Structure, Function and Recognition [Internet]. Wang X, Quinn PJ, editors. Dordrecht: Springer Netherlands; 2010. doi:10.1007/978-90-481-9078-2
34. Frirdich E, Lindner B, Holst O, Whitfield C. Overexpression of the waaZ gene leads to modification of the structure of the inner core region of Escherichia coli lipopolysaccharide, truncation of the outer core, and reduction of the amount of O polysaccharide on the cell surface. J Bacteriol. 2003;185: 1659–1671. doi:10.1128/JB.185.5.1659-1671.2003
35. Muller-Loennies S, Lindner B, Brade H. Structural Analysis of Oligosaccharides from Lipopolysaccharide (LPS) of Escherichia coli K12 Strain W3100 Reveals a Link between Inner and Outer Core LPS Biosynthesis. J Biol Chem. 2003;278: 34090–34101. doi:10.1074/jbc.M303985200
36. Forchhammer K. Glutamine signalling in bacteria. Front Biosci. 2007;12: 358. doi:10.2741/2069
37. Klein G, Muller-Loennies S, Lindner B, Kobylak N, Brade H, Raina S. Molecular and Structural Basis of Inner Core Lipopolysaccharide Alterations in Escherichia coli: Incorporation of Glucuronic Acid and Phosphoethanolamine in the Heptose Region. J Biol Chem. 2013;288: 8111–8127. doi:10.1074/jbc.M112.445981
38. Zahringer U, Ittig S, Lindner B, Moll H, Schombel U, Gisch N, et al. NMR-based Structural Analysis of the Complete Rough-type Lipopolysaccharide Isolated from Capnocytophaga canimorsus. J Biol Chem. 2014;289: 23963–23976. doi:10.1074/jbc.M114.571489
39. Gronow S, Lindner B, Brade H, Muller-Loennies S. Kdo-(2 → 8)-Kdo-(2 → 4)-Kdo but not Kdo-(2 → 4)-Kdo-(2 → 4)-Kdo is an acceptor for transfer of L-glycero-α-D-manno-heptose by Escherichia coli heptosyltransferase I (WaaC). Innate Immun. 2009;15: 13–23. doi:10.1177/1753425908099765
40. John CM, Liu M, Jarvis GA. Profiles of structural heterogeneity in native lipooligosaccharides of Neisseria and cytokine induction. J Lipid Res. 2008;50: 424–438. doi:10.1194/jlr.M800184-JLR200
41. Sweet C, Alpuche G, Landis C, Sandman B. Endotoxin Structures in the Psychrophiles Psychromonas marina and Psychrobacter cryohalolentis Contain Distinctive Acyl Features. Mar Drugs. 2014;12: 4126–4147. doi:10.3390/md12074126
42. Mujika M, Zuzuarregui A, Sanchez-Gomez S, de Tejada GM, Arana S, Perez-Lorenzo E. Screening and selection of synthetic peptides for a novel and optimized endotoxin detection method. J Biotechnol. Elsevier B.V.; 2014;186: 162–168. doi:10.1016/j.jbiotec.2014.06.018
43. Rudyk O, Phinikaridou A, Prysyazhna O, Burgoyne JR, Botnar RM, Eaton P. Protein kinase G oxidation is a major cause of injury during sepsis. Proc Natl Acad Sci. 2013;110: 9909–9913. doi:10.1073/pnas.1301026110
44. Magi S, Nasti AA, Gratteri S, Castaldo P, Bompadre S, Amoroso S, et al. Gram-negative endotoxin lipopolysaccharide induces cardiac hypertrophy: Detrimental role of Na+–Ca2+ exchanger. Eur J Pharmacol. Elsevier; 2015;746: 31–40. doi:10.1016/j.ejphar.2014.10.054
45. Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003;3: 169–176. doi:10.1038/nri1004
46. Mack L, Brill B, Delis N, Groner B. Endotoxin depletion of recombinant protein preparations through their preferential binding to histidine tags. Anal Biochem. Elsevier Inc.; 2014;466: 83–88. doi:10.1016/j.ab.2014.08.020
47. Lieder R, Gaware VS, Thormodsson F, Einarsson JM, Ng C, Gislason J, et al. Endotoxins affect bioactivity of chitosan derivatives in cultures of bone marrow-derived human mesenchymal stem cells. Acta Biomater. Acta Materialia Inc.; 2013;9: 4771–4778. doi:10.1016/j.actbio.2012.08.043
48. Kim HM, Park BS, Kim J-I, Kim SE, Lee J, Oh SC, et al. Crystal Structure of the TLR4-MD-2 Complex with Bound Endotoxin Antagonist Eritoran. Cell. 2007;130: 906–917. doi:10.1016/j.cell.2007.08.002
49. Park BS, Song DH, Kim HM, Choi B-S, Lee H, Lee J-O. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature. Nature Publishing Group; 2009;458: 1191–1195. doi:10.1038/nature07830
50. Liping L. Protein and endotoxin interactions and endotoxin removal from protein solutions [Internet]. New Jersey Institute of Technology. 1999. Available: http://archives.njit.edu/vol01/etd/1990s/1999/njit-etd1999-035/njit-etd1999-035.pdf
51. Li Y, Boraschi D. Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine. 2016;11: 269–287. doi:10.2217/nnm.15.196
52. Ohno N, Morrison DC. Lipopolysaccharide interaction with lysozyme. Binding of lipopolysaccharide to lysozyme and inhibition of lysozyme enzymatic activity. J Biol Chem. 1989;264: 4434–4441.
53. Ongkudon CM, Hodges E, Murphy K, Danquah MK. Removal of endotoxins from plasmid DNA: Analysis of aggregative interaction of mobile divalent metal cations with endotoxins and plasmid DNA. J Sep Sci. 2012;35: 3208–3216. doi:10.1002/jssc.201200237
54. Lopes AM, Santos-Ebinuma VDC, Novaes LCDL, Molino JVD, Barbosa LRS, Pessoa A, et al. LPS–protein aggregation influences protein partitioning in aqueous two-phase micellar systems. Appl Microbiol Biotechnol. 2013;97: 6201–6209. doi:10.1007/s00253-013-4922-x
55. Pulido D, Moussaoui M, Andreu D, Nogues M V., Torrent M, Boix E. Antimicrobial Action and Cell Agglutination by the Eosinophil Cationic Protein Are Modulated by the Cell Wall Lipopolysaccharide Structure. Antimicrob Agents Chemother. 2012;56: 2378–2385. doi:10.1128/AAC.06107-11
56. Kushibiki T, Kamiya M, Aizawa T, Kumaki Y, Kikukawa T, Mizuguchi M, et al. Interaction between tachyplesin I, an antimicrobial peptide derived from horseshoe crab, and lipopolysaccharide. Biochim Biophys Acta - Proteins Proteomics. Elsevier B.V.; 2014;1844: 527–534. doi:10.1016/j.bbapap.2013.12.017
57. Oztug M, Martinon D, Weers PMM. Characterization of the ApoLp-III/LPS Complex: Insight into the Mode of Binding Interaction. Biochemistry. 2012;51: 6220–6227. doi:10.1021/bi300619a
58. Ma L, Yang F, Zheng J. Application of fluorescence resonance energy transfer in protein studies. J Mol Struct. Elsevier B.V.; 2014;1077: 87–100. doi:10.1016/j.molstruc.2013.12.071
59. Anspach FB. Endotoxin removal by affinity sorbents. J Biochem Biophys Methods. 2001;49: 665–681. doi:10.1016/S0165-022X(01)00228-7
60. Hirayama C, Sakata M. Chromatographic removal of endotoxin from protein solutions by polymer particles. J Chromatogr B. 2002;781: 419–432. doi:10.1016/S1570-0232(02)00430-0
61. Bui A. Structural characteristics of bacterial endotoxins. UNIVERISTY OF PÉCS. 2012.
62. Yu H, Nakase I, Pujals S, Hirose H, Tanaka G, Katayama S, et al. Expressed protein ligation for the preparation of fusion proteins with cell penetrating peptides for endotoxin removal and intracellular delivery. Biochim Biophys Acta - Biomembr. Elsevier B.V.; 2010;1798: 2249–2257. doi:10.1016/j.bbamem.2010.02.003
63. Ryan J. Endotoxins and Cell Culture. Corning Life Sci Tech Bull. 2008; 1–8. Available: http://csmedia2.corning.com/LifeSciences/media/pdf/cc_endotoxins_tc_305_rev1.pdf
64. Roch T, Ma N, Kratz K, Lendlein A. Cell-based detection of microbial biomaterial contaminations. Clin Hemorheol Microcirc. 2015;60: 51–63. doi:10.3233/CH-151939
65. Hreniak A, Maruszewski K, Rybka J, Gamian A, Czyzewski J. A luminescence endotoxin biosensor prepared by the sol-gel method. Opt Mater (Amst). 2004;26: 141–144. doi:10.1016/j.optmat.2003.11.013
66. Oliveira MDL, Andrade CAS, Correia MTS, Coelho LCBB, Singh PR, Zeng X. Impedimetric biosensor based on self-assembled hybrid cystein-gold nanoparticles and CramoLL lectin for bacterial lipopolysaccharide recognition. J Colloid Interface Sci. Elsevier Inc.; 2011;362: 194–201. doi:10.1016/j.jcis.2011.06.042
67. Burkhardt M, LopezAcosta A, Reiter K, Lopez V, Lees A. Purification of soluble CD14 fusion proteins and use in an electrochemiluminescent assay for lipopolysaccharide binding. Protein Expr Purif. 2007;51: 96–101. doi:10.1016/j.pep.2006.06.006
68. Yeo TY, Choi JS, Lee BK, Kim BS, Yoon HI, Lee HY, et al. Electrochemical endotoxin sensors based on TLR4/MD-2 complexes immobilized on gold electrodes. Biosens Bioelectron. Elsevier B.V.; 2011;28: 139–145. doi:10.1016/j.bios.2011.07.010
69. Limbut W, Hedstrom M, Thavarungkul P, Kanatharana P, Mattiasson B. Capacitive biosensor for detection of endotoxin. Anal Bioanal Chem. 2007;389: 517–525. doi:10.1007/s00216-007-1443-4
70. Thompson M, Blaszykowski C, Sheikh S, Romaschin A. A true theranostic approach to medicine: Towards tandem sensor detection and removal of endotoxin in blood. Biosens Bioelectron. Elsevier; 2015;67: 3–10. doi:10.1016/j.bios.2014.07.008
71. Iijima S, Kato D, Yabuki S, Niwa O, Mizutani F. Enzymatically amplified electrochemical detection for lipopolysaccharide using ferrocene-attached polymyxin B and its analogue. Biosens Bioelectron. Elsevier B.V.; 2011;26: 2080–2084. doi:10.1016/j.bios.2010.09.009
72. Suzuki MM, Matsumoto M, Omi H, Kobayashi T, Nakamura A, Kishi H, et al. Interaction of peptide-bound beads with lipopolysaccharide and lipoproteins. J Microbiol Methods. Elsevier B.V.; 2014;100: 137–141. doi:10.1016/j.mimet.2014.02.018
73. Kato D, Oda A, Tanaka M, Iijima S, Kamata T, Todokoro M, et al. Poly-ε-Lysine Modified Nanocarbon Film Electrodes for LPS Detection. Electroanalysis. 2014;26: 618–624. doi:10.1002/elan.201300542
74. Voss S, Fischer R, Jung G, Wiesmüller K-H, Brock R. A Fluorescence-Based Synthetic LPS Sensor. J Am Chem Soc. 2007;129: 554–561. doi:10.1021/ja065016p
75. Yang M, Kostov Y, Bruck HA, Rasooly A. Carbon nanotubes with enhanced chemiluminescence immunoassay for CCD-based detection of staphylococcal enterotoxin B in food. Anal Chem. 2008;80: 8532–8537. doi:10.1021/ac801418n
76. Wang H, Blais BW, Brooks BW, Yamazaki H. Salmonella detection by the polymyxin-cloth enzyme immunoassay using polyclonal and monoclonal detector antibodies. Int J Food Microbiol. 1996;29: 31–40. doi:10.1016/0168-1605(95)00016-X
77. Hochel I, Slavickova D, Viochna D, Skvor J, Steinhauserova I. Detection of Campylobacter species in foods by indirect competitive ELISA using hen and rabbit antibodies. Food Agric Immunol. 2007;18: 151–167. doi:10.1080/09540100701666857
78. Nieradka K, Kapczynska K, Rybka J, Lipinski T, Grabiec P, Skowicki M, et al. Microcantilever array biosensors for detection and recognition of Gram-negative bacterial endotoxins. Sensors Actuators, B Chem. 2014;198: 114–124. doi:10.1016/j.snb.2014.03.023
79. Ding JL, Gan ST, Ho B. Single-stranded DNA oligoaptamers: Molecular recognition and LPS antagonism are length- and secondary structure-dependent. J Innate Immun. 2008;1: 46–58. doi:10.1159/000145542
80. Su W, Lin M, Lee H, Cho M, Choe WS, Lee Y. Determination of endotoxin through an aptamer-based impedance biosensor. Biosens Bioelectron. Elsevier B.V.; 2012;32: 32–36. doi:10.1016/j.bios.2011.11.009
81. Su W, Kim S-E, Cho M, Nam J-D, Choe W-S, Lee Y. Selective detection of endotoxin using an impedance aptasensor with electrochemically deposited gold nanoparticles. Innate Immun. 2013;19: 388–397. doi:10.1177/1753425912465099
82. Zuo M, Chen L, Jiang H, Tan L, Luo Z, Wang Y. Detecting endotoxin with a flow cytometry-based magnetic aptasensor. Anal Biochem. Elsevier Inc.; 2014;466: 38–43. doi:10.1016/j.ab.2014.08.018
83. Bai L, Chai Y, Pu X, Yuan R. A signal-on electrochemical aptasensor for ultrasensitive detection of endotoxin using three- way DNA junction-aided enzymatic recycling and graphene nanohybrid for amplification. Nanoscale. 2014;6: 2902–8. doi:10.1039/c3nr05930h
84. Bouafsoun A, Othmane A, Jaffrezic-Renault N, Kerkeni A, Thoumire O, Prigent AF, et al. Impedance endothelial cell biosensor for lipopolysaccharide detection. Mater Sci Eng C. 2008;28: 653–661. doi:10.1016/j.msec.2007.10.073
85. Inoue KY, Yasukawa T, Shiku H, Matsue T. Cell-Based Electrochemical Assay for Endotoxin Using a Secreted Alkaline Phosphatase Reporter System. Electrochemistry. 2008;76: 525–528. doi:10.5796/electrochemistry.76.525
86. Unger RE, Peters K, Sartoris A, Freese C, Kirkpatrick CJ. Human endothelial cell-based assay for endotoxin as sensitive as the conventional Limulus Amebocyte Lysate assay. Biomaterials. Elsevier Ltd; 2014;35: 3180–3187. doi:10.1016/j.biomaterials.2013.12.059
87. Veiseh M, Veiseh O, Martin MC, Bertozzi C, Zhang M. Single-cell-based sensors and synchrotron FTIR spectroscopy: A hybrid system towards bacterial detection. Biosens Bioelectron. 2007;23: 253–260. doi:10.1016/j.bios.2007.04.010
88. Rangin M, Basu A. Lipopolysaccharide Identification with Functionalized Polydiacetylene Liposome Sensors. J Am Chem Soc. 2004;126: 5038–5039. doi:10.1021/ja039822x
89. Abdin MJ, Altintas Z, Tothill IE. In silico designed nanoMIP based optical sensor for endotoxins monitoring. Biosens Bioelectron. 2015;67: 177–83. doi:10.1016/j.bios.2014.08.009
90. Cho M, Chun L, Lin M, Choe W, Nam J, Lee Y. Sensitive electrochemical sensor for detection of lipopolysaccharide on metal complex immobilized gold electrode. Sensors Actuators B Chem. 2012;174: 490–494. doi:10.1016/j.snb.2012.09.017
91. Zuzuarregui A, Morant-Minana MC, Perez-Lorenzo E, de Tejada GM, Arana S, Mujika M. Implementation and Characterization of a Fully Miniaturized Biosensor for Endotoxin Detection Based on Electrochemical Techniques. IEEE Sens J. 2014;14: 270–277. doi:10.1109/JSEN.2013.2282035
92. Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosens Bioelectron. 2005;20: 2424–34. doi:10.1016/j.bios.2004.11.006
93. Song S, Wang L, Li J, Fan C, Zhao J. Aptamer-based biosensors. TrAC Trends Anal Chem. 2008;27: 108–117. doi:10.1016/j.trac.2007.12.004
94. Miao P, Han K, Qi J, Zhang C, Liu T. Electrochemical investigation of endotoxin induced limulus amebocyte lysate gel-clot process. Electrochem commun. Elsevier B.V.; 2013;26: 29–32. doi:10.1016/j.elecom.2012.10.002
95. Jares-Erijman EA, Jovin TM. FRET imaging. Nat Biotechnol. 2003;21: 1387–1395. doi:10.1038/nbt896
96. Zeug A, Woehler A, Neher E, Ponimaskin EG. Quantitative Intensity-Based FRET Approaches—A Comparative Snapshot. Biophys J. 2012;103: 1821–1827. doi:10.1016/j.bpj.2012.09.031
97. Hussain SA. An Introduction to Fluorescence Resonance Energy Transfer ( FRET ). Sci J Phys. 2012;2012: 1–4. doi:10.7237/sjp/268
98. Prasad S, Zeug A, Ponimaskin E. Analysis of Receptor–Receptor Interaction by Combined Application of FRET and Microscopy. Receptor-Receptor Interactions. 1st ed. Elsevier Inc.; 2013. pp. 243–265. doi:10.1016/B978-0-12-408143-7.00014-1
99. Piston DW, Kremers G. Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci. 2007;32: 407–414. doi:10.1016/j.tibs.2007.08.003
100. Cho S, Jang J, Song C, Lee H, Ganesan P, Yoon T-Y, et al. Simple super-resolution live-cell imaging based on diffusion-assisted Förster resonance energy transfer. Sci Rep. 2013;3: 1208. doi:10.1038/srep01208
101. Obeng EM, Dullah EC, Danquah MK, Budiman C, Ongkudon CM. FRET spectroscopy—towards effective biomolecular probing. Anal Methods. 2016;8: 5323–5337. doi:10.1039/C6AY00950F
102. Szollosi J, Damjanovich S, Matyus L. Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry. 1998;34: 159–79. Available: http://www.ncbi.nlm.nih.gov/pubmed/9725457
103. Clegg RM. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 1992;211: 353–88. Available: http://www.ncbi.nlm.nih.gov/pubmed/1406315
104. Förster T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys. 1948;437: 55–75. doi:10.1002/andp.19484370105
105. Zheng J. FRET and Its Biological Application as a Molecular Ruler. In: Jue T, editor. Biomedical Applications of Biophysics. Springer S. Totowa, NJ: Humana Press; 2010. pp. 119–136. doi:10.1007/978-1-60327-233-9_5
106. Valeur B. Molecular Fluorescence: Principles and Applications. Valeur B, editor. Wiley-VCH Verlag GmbH; 2001.
107. Lakowicz JR. Principles of Fluorescence Spectroscopy. 3rd ed. Springer Science+Business Media, LLC; 2006.
108. Gadella TWJ, editor. FRET and FLIM Techniques [Internet]. Laboratory techniques in biochemistry and molecular biology. Elsevier B.V.; 2009. Available: http://linkinghub.elsevier.com/retrieve/pii/0968000476903583
109. Ammasi Periasamy, Day RN, editors. Molecular Imaging: FRET Microscopy and Spectroscopy. Elsevier; 2011.
110. Seth D, Chakrabarty D, Chakraborty A, Sarkar N. Study of energy transfer from 7-amino coumarin donors to rhodamine 6G acceptor in non-aqueous reverse micelles. Chem Phys Lett. 2005;401: 546–552. doi:10.1016/j.cplett.2004.11.119
111. Grecco HE, Verveer PJ. FRET in cell biology: Still shining in the age of super-resolution? ChemPhysChem. 2011;12: 484–490. doi:10.1002/cphc.201000795
112. Karpova T, McNally JG. Detecting Protein-Protein Interactions with CFP-YFP FRET by Acceptor Photobleaching. Current Protocols in Cytometry. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2006. p. Unit12.7. doi:10.1002/0471142956.cy1207s35
113. Voss U, Larrieu A, Wells DM. From jellyfish to biosensors: the use of fluorescent proteins in plants. Int J Dev Biol. 2013;57: 525–533. doi:10.1387/ijdb.130208dw
114. Lakowicz JR, Gryczynski I, Wiczk W, Laczko G, Prendergast FC, Johnson ML. Conformational distributions of melittin in water / methanol mixtures from frequency-domain measurements of nonradiative energy transfer. Biophys Chem. 1990;36: 99–115. doi:10.1016/0301-4622(90)85014-W
115. Heyduk T. Measuring protein conformational changes by FRET/LRET. Curr Opin Biotechnol. 2002;13: 292–296. doi:10.1016/S0958-1669(02)00332-4
116. Hink MA, Bisselin T, Visser AJWG. Imaging protein-protein interactions in living cells. Plant Mol Biol. 2002;50: 871–83. Available: http://www.ncbi.nlm.nih.gov/pubmed/12516859
117. Nagl S, Bauer R, Sauer U, Preininger C, Bogner U, Schaeferling M. Microarray analysis of protein–protein interactions based on FRET using subnanosecond-resolved fluorescence lifetime imaging. Biosens Bioelectron. 2008;24: 397–402. doi:10.1016/j.bios.2008.04.016
118. Parsons M, Vojnovic B, Ameer-Beg S. Imaging protein–protein interactions in cell motility using fluorescence resonance energy transfer (FRET). Biochem Soc Trans. 2004;32: 431–433. doi:10.1042/bst0320431
119. Bunt G, Wouters FS. Visualization of Molecular Activities Inside Living Cells with Fluorescent Labels. International review of cytology. 2004. pp. 205–277. doi:10.1016/S0074-7696(04)37005-1
120. Szöllosi J, Damjanovich S, Matyus L. Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry. 1998;34: 159–79. doi:10.1002/(SICI)1097-0320(19980815)34:4<159::AID-CYTO1>3.0.CO;2-B
121. Sekar RB, Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J Cell Biol. 2003;160: 629–633. doi:10.1083/jcb.200210140
122. Stella L, van de Weert M, Burrows HD, Fausto R. Fluorescence spectroscopy and binding: getting it right. J Mol Struct. 2014;1077: 1–3. doi:10.1016/j.molstruc.2014.04.085
123. Chung C-I, Makino R, Dong J, Ueda H. Open flower fluoroimmunoassay: a general method to make fluorescent protein-based immunosensor probes. Anal Chem. American Chemical Society; 2015;87: 3513–9. doi:10.1021/acs.analchem.5b00088
124. Ung TDT, Tran TKC, Pham TN, Nguyen DN, Dinh DK, Nguyen QL. CdTe and CdSe quantum dots: synthesis, characterizations and applications in agriculture. Adv Nat Sci Nanosci Nanotechnol. 2012;3: 43001. doi:10.1088/2043-6262/3/4/043001
125. Vaya I, Lhiaubet-Vallet V, Jimenez MC, Miranda MA. Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem Soc Rev. 2014;43: 4102. doi:10.1039/c3cs60413f
126. Chen Q, Zhang X, Sun Y, Ritt M, Sivaramakrishnan S, Fan X. Highly sensitive fluorescent protein FRET detection using optofluidic lasers. Lab Chip. 2013;13: 2679. doi:10.1039/c3lc50207d
127. Jones G, Jiang H. Detection of lipopolysaccharide and lipid A employing a spermine-pyrene conjugate. Bioconjug Chem. 2005;16: 621–625. doi:10.1021/bc0497517
128. Zeng L, Wu J, Dai Q, Liu W, Wang P, Lee CS. Sensing of bacterial endotoxin in aqueous solution by supramolecular assembly of pyrene derivative. Org Lett. 2010;12: 4014–4017. doi:10.1021/ol1016228
129. Lim SK, Chen P, Lee FL, Moochhala S, Liedberg B. Peptide-Assembled Graphene Oxide as a Fluorescent Turn-On Sensor for Lipopolysaccharide (Endotoxin) Detection. Anal Chem. 2015;87: 9408–9412. doi:10.1021/acs.analchem.5b02270
130. Voss S, Fischer R, Jung G, Wiesmuller K-H, Brock R. A fluorescence-based synthetic LPS sensor. J Am Chem Soc. 2007;129: 554–61. doi:10.1021/ja065016p
131. Brauser A. Influence of lipopolysaccharides (LPS) on antibiotic permeation [Internet]. Jacobs University. 2011. Available: https://www.jacobs-university.de/phd/files/phd20110524_Brauser.pdf
132. Kastritis PL, Bonvin AMJJ. On the binding affinity of macromolecular interactions: daring to ask why proteins interact. J R Soc Interface. 2012;10: 20120835–20120835. doi:10.1098/rsif.2012.0835
133. Dullah EC, Ongkudon CM. Current trends in endotoxin detection and analysis of endotoxin–protein interactions. Crit Rev Biotechnol. 2016; 1–11. doi:10.3109/07388551.2016.1141393