Aspiration techniques for bronchoalveolar lavage in translational respiratory research: Paving the way to develop novel therapeutic moieties

Main Article Content

Kamal Dua
Shakti D. Shukla
Philip M. Hansbro

Keywords

bronchoalveolar lavage, aspiration, respiratory

Abstract

Bronchoalveolar lavage (BAL) is a simple, yet informative tool in understanding the immunopathology of various lung diseases via quantifying various inflammatory cells, cytokines and growth factors. At present, this traditional method is often blended with several robust and sophisticated molecular and biological techniques sustaining the significance and longevity of this technique. Crucially, the existence of slightly distinct approaches and variables employed at different laboratories around the globe in performing BAL aspiration indeed demands an utmost need to optimize and develop an effective, cost-effective and a reproducible technique. This mini review will be of importance to the biological translational scientist, particularly respiratory researchers in understanding the fundamentals and approaches to apply and consider with BAL aspiration techniques. This will ensure generating a meaningful and clinically relevant data which in turn accelerate the development of new and effective therapeutic moieties for major respiratory conditions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
Abstract 56 | HTML Downloads 350 PDF Downloads 201 Remote Downloads 0

References

1. WHO. The top 10 causes of death. Geneva: World Health Organisation; 2014.
2. Dua K, Hansbro NG, Foster PS, Hansbro PM. MicroRNAs as therapeutics for future drug delivery systems in treatment of lung diseases. Drug Delivery and Translational Research. 2016:1-11.
3. Starkey M, Hanish I, Dua K, Nair P, Haw T, Hsu A, et al. 175: Interleukin-13 predisposes mice to more severe influenza infection by suppressing interferon responses and activating microRNA-21/PI3K. Cytokine. 2014;70(1):70.
4. Daubeuf F, Frossard N. Performing bronchoalveolar lavage in the mouse. Current protocols in mouse biology. 2012:167-75.
5. Gee J, Fick R. Bronchoalveolar lavage. Thorax. 1980;35(1):1-8.
6. Chen-Yu Hsu A, Starkey MR, Hanish I, Parsons K, Haw TJ, Howland LJ, et al. Targeting PI3K-p110α suppresses influenza virus infection in chronic obstructive pulmonary disease. American journal of respiratory and critical care medicine. 2015;191(9):1012-23.
7. Eftekhari P, Hajizadeh S, Raoufy MR, Masjedi MR, Yang M, Hansbro N, et al. Preventive effect of N-acetylcysteine in a mouse model of steroid resistant acute exacerbation of asthma. Excli j. 2013;12:184-92. Epub 2013/01/01. PubMed PMID: 26417226; PubMed Central PMCID: PMCPMC4531779.
8. Woods KS, Defarges AM, Abrams-Ogg AC, Viel L, Brisson BA, Bienzle D. Comparison of manual and suction pump aspiration techniques for performing bronchoalveolar lavage in 18 dogs with respiratory tract disease. J Vet Intern Med. 2014;28(5):1398-404. Epub 2014/07/25. doi: 10.1111/jvim.12403. PubMed PMID: 25056240; PubMed Central PMCID: PMCPMC4895568.
9. Du Rand IA, Blaikley J, Booton R, Chaudhuri N, Gupta V, Khalid S, et al. British Thoracic Society guideline for diagnostic flexible bronchoscopy in adults: accredited by NICE. Thorax. 2013;68(Suppl 1):i1-i44. doi: 10.1136/thoraxjnl-2013-203618.
10. Rosell A, Xaubet A, Agusti C, Castella J, Puzo C, Curull V, et al. A new BAL fluid instillation and aspiration technique: a multicenter randomized study. Respiratory medicine. 2006;100(3):529-35. Epub 2005/07/19. doi: 10.1016/j.rmed.2005.06.002. PubMed PMID: 16023336.
11. Balfour-Lynn IM, Spencer H. Bronchoscopy--how and when? Paediatric respiratory reviews. 2002;3(3):255-64. Epub 2002/10/12. PubMed PMID: 12376063.
12. Leiten EO, Martinsen EMH, Bakke PS, Eagan TML, Gronseth R. Complications and discomfort of bronchoscopy: a systematic review. European Clinical Respiratory Journal. 2016;3. doi: 10.3402/ecrj.v3.33324. PubMed PMID: 27839531; PubMed Central PMCID: PMCPMC5107637.
13. Girkin JL, Hatchwell L, Collison AM, Starkey MR, Hansbro PM, Yagita H, et al. TRAIL signaling is pro-inflammatory and pro-viral in a murine model of rhinovirus 1B infection. Am J Physiol Lung Cell Mol Physiol. 2016:ajplung.00200.2016. Epub 2016/11/12. doi: 10.1152/ajplung.00200.2016. PubMed PMID: 27836899.
14. Jarnicki AG, Schilter H, Liu G, Wheeldon K, Essilfie AT, Foot JS, et al. The inhibitor of semicarbazide-sensitive amine oxidase, PXS-4728A, ameliorates key features of chronic obstructive pulmonary disease in a mouse model. Br J Pharmacol. 2016;173(22):3161-75. Epub 2016/10/21. doi: 10.1111/bph.13573. PubMed PMID: 27495192; PubMed Central PMCID: PMCPMC5071557.
15. Han H, Ziegler SF. Bronchoalveolar Lavage and Lung Tissue Digestion. Bio-protocol; 2013.
16. Takaishi M, Awaya Y, Ishioka S, Hozawa S, Oyama T, Takahashi K, et al. Analyses of Broncho Alveolar Lav Age Fluid (BALF) in MRL-LPR/LPR Mice. Autoimmunity. 1991;8(3):183-6.
17. Okada S, Hasegawa S, Hasegawa H, Ainai A, Atsuta R, Ikemoto K, et al. Analysis of bronchoalveolar lavage fluid in a mouse model of bronchial asthma and H1N1 2009 infection. Cytokine. 2013;63(2):194-200.
18. Hoffman AM. Bronchoalveolar lavage: sampling technique and guidelines for cytologic preparation and interpretation. Veterinary Clinics of North America: Equine Practice. 2008;24(2):423-35.
19. WALTERS DM, WILLS-KARP M, MITZNER W. Assessment of cellular profile and lung function with repeated bronchoalveolar lavage in individual mice. Physiological genomics. 2000;2(1):29-36.
20. Rivera B, Miller SR, Brown EM, Price RE. A novel method for endotracheal intubation of mice and rats used in imaging studies. Journal of the American Association for Laboratory Animal Science. 2005;44(2):52-5.
21. Zhao X, Wu N, Zhou J, Yang Y, Fang Y, Cheng W, et al. A technique for retrograde intubation in mice. Lab animal. 2006;35(3):39.
22. Vergari A, Polito A, Musumeci M, Palazzesi S, Marano G. Video-assisted orotracheal intubation in mice. Laboratory animals. 2003;37(3):204-6.
23. Hastings RH, Summers-Torres D. Direct laryngoscopy in mice. Journal of the American Association for Laboratory Animal Science. 1999;38(6):33-5.
24. Das S, MacDonald K, Chang H-YS, Mitzner W. A simple method of mouse lung intubation. JoVE (Journal of Visualized Experiments). 2013;(73):e50318-e.
25. Novak Z, Petak F, Banfi A, Toth-Szuki V, Barati L, Kosa L, et al. An improved technique for repeated bronchoalveolar lavage and lung mechanics measurements in individual rats. Respiratory physiology & neurobiology. 2006;154(3):467-77. Epub 2006/01/18. doi: 10.1016/j.resp.2005.12.004. PubMed PMID: 16413833.
26. Maxeiner JH, Karwot R, Hausding M, Sauer KA, Scholtes P, Finotto S. A method to enable the investigation of murine bronchial immune cells, their cytokines and mediators. Nature protocols. 2007;2(1):105-12.
27. Essilfie A-T, Horvat JC, Kim RY, Mayall JR, Pinkerton JW, Beckett EL, et al. Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-insensitive asthma. Thorax. 2015:thoraxjnl-2014-206067.
28. Burgess JK, Boustany S, Moir LM, Weckmann M, Lau JY, Grafton K, et al. Reduction of tumstatin in asthmatic airways contributes to angiogenesis, inflammation, and hyperresponsiveness. American journal of respiratory and critical care medicine. 2010;181(2):106-15.
29. Yang M, Kumar RK, Hansbro PM, Foster PS. Emerging roles of pulmonary macrophages in driving the development of severe asthma. Journal of leukocyte biology. 2012;91(4):557-69.
30. Beckett EL, Stevens RL, Jarnicki AG, Kim RY, Hanish I, Hansbro NG, et al. A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. Journal of Allergy and Clinical Immunology. 2013;131(3):752-62. e7.
31. Haw T, Starkey M, Nair P, Pavlidis S, Liu G, Nguyen D, et al. A pathogenic role for tumor necrosis factor-related apoptosis-inducing ligand in chronic obstructive pulmonary disease. Mucosal immunology. 2015.
32. Moeller A, Ask K, Warburton D, Gauldie J, Kolb M. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? The international journal of biochemistry & cell biology. 2008;40(3):362-82.
33. Baughman R. The uncertainties of bronchoalveolar lavage. European Respiratory Journal. 1997;10(9):1940-2.
34. Garcia JG, Wolven RG, Garcia PL, Keogh BA. Assessment of Interlobar Variation of Bronchoalveolar Lavage Cellular Differentials in Interstitial Lung Diseases 1, 2. American Review of Respiratory Disease. 1986;133(3):444-9.
35. Levine SJ, Kennedy D, Shelhamer JH, Kovacs A, Feuerstein IM, Gill VJ, et al. Diagnosis of Pneumocystis carinii pneumonia by multiple lobe, site-directed bronchoalveolar lavage with immunofluorescent monoclonal antibody staining in human immunodeficiency virus-infected patients receiving aerosolized pentamidine chemoprophylaxis. American Review of Respiratory Disease. 1992;146:838-.
36. Thorpe JE, Baughman RP, Frame PT, Wesseler TA, Staneck JL. Bronchoalveolar lavage for diagnosing acute bacterial pneumonia. Journal of Infectious Diseases. 1987;155(5):855-61.
37. Dohn MN, Baughman RP. Effect of Changing Instilled Volume for Bronchoalveolar Lavage in Patients with Interstitial Lung Disease 1-3. American Review of Respiratory Disease. 1985;132(2):390-2.
38. King T. The handling and analysis of bronchoalveolar lavage specimens. Bronchoalveolar lavage. 1992:3-29.
39. Crystal RG, Reynolds HY, Kalica AR. Bronchoalveolar lavage. The report of an international conference. CHEST Journal. 1986;90(1):122-31.
40. Rosell A, Xaubet A, AgustiC, Castella J, Puzo C, Curull V, et al. A new BAL fluid instillation and aspiration technique: a multicenter randomized study. Respiratory medicine. 2006;100(3):529-35.
41. Singletary ML, Phillippi-Falkenstein KM, Scanlon E, Bohm J, Rudolf P, Veazey RS, et al. Modification of a common BAL technique to enhance sample diagnostic value. Journal of the American Association for Laboratory Animal Science. 2008;47(5):47-51.
42. Thompson AB, Robbins R, Ghafouri M, Linder J, Rennard S. Bronchoalveolar lavage fluid processing. Effect of membrane filtration preparation on neutrophil recovery. Acta cytologica. 1988;33(4):544-9.
43. Haslam P, Baughman R. Report of ERS Task Force: guidelines for measurement of acellular components and standardization of BAL. European Respiratory Journal. 1999;14(2):245-8.
44. Pozzi E, De Rose V, Rennard S, Fabbri L. Clinical guidelines and indications for bronchoalveolar lavage (BAL). The European respiratory journal: official journal of the European Society for Clinical Respiratory Physiology. 1990;3(8).
45. Higgenbottam T, Pohl W. Technical recommendations and guidelines for bronchoalveolar lavage (BAL).
46. Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med. 2007;4(9):e269.
47. Liu G, Cooley MA, Jarnicki AG, Hsu AC, Nair PM, Haw TJ, et al. Fibulin-1 regulates the pathogenesis of tissue remodeling in respiratory diseases. JCI insight. 2016;1(9).
48. Polikepahad S, Barranco WT, Porter P, Anderson B, Kheradmand F, Corry DB. A reversible, non-invasive method for airway resistance measurements and bronchoalveolar lavage fluid sampling in mice. JoVE (Journal of Visualized Experiments). 2010;(38):e1720-e.
49. Asquith KL, Horvat JC, Kaiko GE, Carey AJ, Beagley KW, Hansbro PM, et al. Interleukin-13 promotes susceptibility to chlamydial infection of the respiratory and genital tracts. PLoS Pathog. 2011;7(5):e1001339.
50. Song JA, Yang HS, Lee J, Kwon S, Jung KJ, Heo JD, et al. Standardization of bronchoalveolar lavage method based on suction frequency number and lavage fraction number using rats. Toxicological research. 2010;26(3):203.
51. Chang CC, Chen SH, Ho SH, Yang CY, Wang HD, Tsai ML. Proteomic analysis of proteins from bronchoalveolar lavage fluid reveals the action mechanism of ultrafine carbon black-induced lung injury in mice. Proteomics. 2007;7(23):4388-97.
52. Drent M, van Nierop M, Gerritsen FA, Wouters E, Mulder P. A computer program using BALF-analysis results as a diagnostic tool in interstitial lung diseases. American journal of respiratory and critical care medicine. 1996;153(2):736-41.
53. Drent M, Jacobs J, Cobben N, Costabel U, Wouters E, Mulder P. Computer program supporting the diagnostic accuracy of cellular BALF analysis: a new release. Respiratory medicine. 2001;95(10):781-6.
54. Radhakrishnan D, Yamashita C, Gillio-Meina C, Fraser DD. Translational research in pediatrics III: bronchoalveolar lavage. Pediatrics. 2014:peds. 2013-1911.
55. Hara A, Sakamoto N, Ishimatsu Y, Kakugawa T, Nakashima S, Hara S, et al. S100A9 in BALF is a candidate biomarker of idiopathic pulmonary fibrosis. Respiratory medicine. 2012;106(4):571-80.
56. Huie TJ, Moss M, Frankel SK. What can biomarkers tell us about the pathogenesis of acute exacerbations of idiopathic pulmonary fibrosis? American Journal of Physiology-Lung Cellular and Molecular Physiology. 2010;299(1):L1-L2.
57. Han MK, Zhou Y, Murray S, Tayob N, Noth I, Lama VN, et al. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. The Lancet Respiratory Medicine. 2014;2(7):548-56.
58. Naik PK, Bozyk PD, Bentley JK, Popova AP, Birch CM, Wilke CA, et al. Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2012;303(12):L1046-L56.
59. Molyneaux PL, Cox MJ, Willis-Owen SA, Mallia P, Russell KE, Russell A-M, et al. The role of bacteria in the pathogenesis and progression of idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine. 2014;190(8):906-13.
60. Ortea I, Rodri­guez-Ariza A, Chicano-Ga¡lvez E, Vacas MA, Ga¡mez BJ. Discovery of potential protein biomarkers of lung adenocarcinoma in bronchoalveolar lavage fluid by SWATH MS data-independent acquisition and targeted data extraction. Journal of proteomics. 2016;138:106-14.
61. Gharib SA, Nguyen E, Altemeier WA, Shaffer SA, Doneanu CE, Goodlett DR, et al. Of mice and men: comparative proteomics of bronchoalveolar fluid. European Respiratory Journal. 2010;35(6):1388-95.
62. Kahn N, Granzow M, Meister M, Eberhardt R, Muley T, Baroke E, et al. Transcriptome analysis in endobronchial epithelial lining fluid compared to bronchoalveolar lavage in idiopathic pulmonary fibrosis. European Respiratory Journal. 2015;46(suppl 59):PA3053.
63. Chen Z, Xu Z, Sun S, Yu Y, Lv D, Cao C, et al. TGF-β1, IL-6, and TNF-β1± in bronchoalveolar lavage fluid: useful markers for lung cancer? Scientific reports. 2014;4.
64. van Rijt LS, Kuipers H, Vos N, Hijdra D, Hoogsteden HC, Lambrecht BN. A rapid flow cytometric method for determining the cellular composition of bronchoalveolar lavage fluid cells in mouse models of asthma. Journal of immunological methods. 2004;288(1):111-21.
65. Rong B, Cai X, Liu H, Fu T, Gao W, Zhao C, et al. Increased level of Hsp90-beta in bronchoalveolar lavage fluid correlates with lymphatic invasion and advanced stage of lung cancer patients. American Journal of Translational Research. 2016;8(10):4147.
66. Canonne A, Billen F, Tual C, Ramery E, Roels E, Peters I, et al. Quantitative PCR and Cytology of Bronchoalveolar Lavage Fluid in Dogs with Bordetella bronchiseptica Infection. Journal of Veterinary Internal Medicine. 2016;30(4):1204-9.
67. Pounds JG, Flora JW, Adkins JN, Lee KM, Rana GS, Sengupta T, et al. Characterization of the mouse bronchoalveolar lavage proteome by micro-capillary LC-FTICR mass spectrometry. Journal of Chromatography B. 2008;864(1):95-101.
68. Bessonneau V, Bojko B, Azad A, Keshavjee S, Azad S, Pawliszyn J. Determination of bronchoalveolar lavage bile acids by solid phase microextraction liquid chromatography-tandem mass spectrometry in combination with metabolite profiling: Comparison with enzymatic assay. Journal of Chromatography A. 2014;1367:33-8.
69. Bratke K, Lommatzsch M, Julius P, Kuepper M, Kleine HD, Luttmann W, et al. Dendritic cell subsets in human bronchoalveolar lavage fluid after segmental allergen challenge. Thorax. 2007;62(2):168-75.
70. van Rijt LS, Prins J-B, Leenen PJ, Thielemans K, de Vries VC, Hoogsteden HC, et al. Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD31hiLy-6Cneg bone marrow precursors in a mouse model of asthma. Blood. 2002;100(10):3663-71.
71. van Rijt LS, Jung S, KleinJan A, Vos N, Willart M, Duez C, et al. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. The Journal of experimental medicine. 2005;201(6):981-91.