Embryo microinjection of the lecithotrophic sea urchin Heliocidaris erythrogramma

Main Article Content

Allison Edgar
Maria Byrne
Gregory A. Wray

Keywords

direct development, Heliocidaris erythrogramma, lecithotroph, sea urchin, microinjection

Abstract

Microinjection is a common embryological technique used for many types of experiments, including lineage tracing, manipulating gene expression, or genome editing. Injectable reagents include mRNA overexpression, mis-expression, or dominant-negative experiments to examine a gene of interest, a morpholino antisense oligo to prevent translation of an mRNA or spliceoform of interest and CRISPR-Cas9 reagents. Thus, the technique is broadly useful for basic embryological studies, constructing gene regulatory networks, and directly testing hypotheses about cis-regulatory and coding sequence changes underlying the evolution of development. However, the methods for microinjection in typical planktotrophic marine invertebrates may not work well in the highly modified eggs and embryos of lecithotrophic species. This protocol is optimized for the lecithotrophic sea urchin Heliocidaris erythrogramma.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
Abstract 63 | HTML Downloads 196 PDF Downloads 179 Supplementary information Downloads 0

References

1. Cheers MS, Ettensohn CA. Rapid Microinjection of Fertilized Eggs. Methods in Cell Biology. Elsevier; 2004. pp. 287–310. doi:10.1016/s0091-679x(04)74013-3
2. Cheatle Jarvela AM, Hinman V. A Method for Microinjection of Patiria minata Zygotes. JoVE. 2014. doi:10.3791/51913
3. Heyland A, Reitzel AM, Hodin J. Thyroid hormones determine developmental mode in sand dollars (Echinodermata: Echinoidea). Evolution & Development. 2004;6: 382–392. doi:10.1111/j.1525-142X.2004.04047.x
4. Zakas C, Rockman MV. Dimorphic development in Streblospio benedicti: genetic analysis of morphological differences between larval types. Int J Dev Biol. 2014;58: 593–599. doi:10.1387/ijdb.140088mr
5. Zigler KS, Raff RA. A shift in germ layer allocation is correlated with large egg size and facultative planktotrophy in the echinoid Clypeaster rosaceus. Biol Bull. 2013;224: 192–199.
6. Armstrong AF, Lessios HA. The evolution of larval developmental mode: insights from hybrids between species with obligately and facultatively planktotrophic larvae. Evolution & Development. 2015;17: 278–288. doi:10.1086/BBLv224n3p192
7. Gonzalez P, Uhlinger KR, Lowe CJ. The Adult Body Plan of Indirect Developing Hemichordates Develops by Adding a Hox-Patterned Trunk to an Anterior Larval Territory. Curr Biol. Elsevier Ltd; 2017;27: 87–95. doi:10.1016/j.cub.2016.10.047
8. Wray GA, Raff RA. Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma. Developmental Biology. 1989;132: 458–470.
9. Wray GA, Raff RA. Novel Origins of Lineage Founder Cells in the Direct-Developing Sea Urchin Heliocidaris erythrogmmma. Developmental Biology. 1990;141: 41–54.
10. Henry JJ, Klueg KM, Raff RA. Evolutionary dissociation between cleavage, cell lineage and embryonic axes in sea urchin embryos. Development. 1992;114: 931–938.
11. Kauffman JS, Raff RA. Patterning mechanisms in the evolution of derived developmental life histories: the role of Wnt signaling in axis formation of the direct-developing sea urchin Heliocidaris erythrogramma. Dev Genes Evol. 2003;213: 612–624. doi:10.1007/s00427-003-0365-1
12. Pastinen T. Genome-wide allele-specific analysis: insights into regulatory variation. Nat Rev Genet. Nature Publishing Group; 2010;11: 533–538. doi:10.1038/nrg2815
13. Gaur U, Li K, Mei S, Liu G. Research progress in allele-specific expression and its regulatory mechanisms. J Appl Genetics. 2013;54: 271–283. doi:10.1007/s13353-013-0148-y
14. Wittkopp PJ, Haerum BK, Clark AG. Independent Effects of cis- and trans-regulatory Variation on Gene Expression in Drosophila melanogaster. Genetics. 2008;178: 1831–1835. doi:10.1534/genetics.107.082032
15. Zhuo Z, Lamont SJ, Abasht B. RNA-Seq Analyses Identify Frequent Allele Specific Expression and No Evidence of Genomic Imprinting in Specific Embryonic Tissues of Chicken. Sci Rep. Springer US; 2017;: 1–10. doi:10.1038/s41598-017-12179-9
16. Davidson EH, Erwin DH. Evolutionary innovation and stability in animal gene networks. J Exp Zool. 2009;9999B: 182–186. doi:10.1002/jez.b.21329
17. Martik ML, Lyons DC, McClay DR. Developmental gene regulatory networks in sea urchins and what we can learn from them. F1000Res. 2016;5: 203–8. doi:10.12688/f1000research.7381.1
18. Oulhen N, Wessel GM. Albinism as a visual, in vivo guide for CRISPR/Cas9 functionality in the sea urchin embryo. Mol Reprod Dev. 2016;83: 1046–1047. doi:10.1002/mrd.22757
19. Cui M, Lin C-Y, Su Y-H. Recent advances in functional perturbation and genome editing techniques in studying sea urchin development. Briefings in Functional Genomics. 2017;16: 309–318. doi:10.1093/bfgp/elx011
20. Sive HL, Grainger RM, Harland RM. Calibration of the Injection Volume for Microinjection of Xenopus Oocytes and Embryos. Cold Spring Harbor Protocols. 2010;2010: pdb.prot5537–pdb.prot5537. doi:10.1101/pdb.prot5537
21. Eisen JS, Smith JC. Controlling morpholino experiments: don't stop making antisense. Development. 2008;135: 1735–1743. doi:10.1242/dev.001115