An optimized procedure for isolation of rodent and human skeletal muscle sarcoplasmic and myofibrillar proteins

Main Article Content

Michael D. Roberts
Kaelin C. Young
Carlton D. Fox
Christopher G. Vann
Paul A. Roberson
Shelby C. Osburn
Johnathon H. Moore
Petey W. Mumford
Matthew A. Romero
Darren T. Beck
Cody T. Haun
Veera L.D. Badisa
Benjamin M. Mwashote
Victor Ideanusi
Andreas N. Kavazis

Keywords

protein isolation, muscle, MF protein, actin, myosin

Abstract

Several published protocols exist for isolating contractile or myofibrillar (MF) proteins from skeletal muscle, however, achieving complete resuspension of the myofibril pellet can be technically challenging. We performed several previously published MF isolation methods with the intent of determining which method was most suitable for MF protein isolation and solubilization. Here, we provide an optimized protocol to isolate sarcoplasmic and solubilized MF protein fractions from mammalian skeletal muscle suitable for several downstream assays.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
Abstract 91 | HTML Downloads 150 PDF Downloads 513

References

1. Carrithers JA, Carroll CC, Coker RH, Sullivan DH, Trappe TA. Concurrent exercise and muscle protein synthesis: implications for exercise countermeasures in space. Aviat Space Environ Med. 2007;78(5):457-62. Epub 2007/06/02. PubMed PMID: 17539438.
2. Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol. 2009;587(1):211-7. Epub 2008/11/13. doi: 10.1113/jphysiol.2008.164483. PubMed PMID: 19001042; PubMed Central PMCID: PMCPMC2670034.
3. Holm L, van Hall G, Rose AJ, Miller BF, Doessing S, Richter EA, et al. Contraction intensity and feeding affect collagen and myofibrillar protein synthesis rates differently in human skeletal muscle. Am J Physiol Endocrinol Metab. 2010;298(2):E257-69. Epub 2009/11/12. doi: 10.1152/ajpendo.00609.2009. PubMed PMID: 19903866.
4. Kumar V, Atherton PJ, Selby A, Rankin D, Williams J, Smith K, et al. Muscle protein synthetic responses to exercise: effects of age, volume, and intensity. J Gerontol A Biol Sci Med Sci. 2012;67(11):1170-7. Epub 2012/08/04. doi: 10.1093/gerona/gls141. PubMed PMID: 22859389.
5. Camera DM, West DW, Burd NA, Phillips SM, Garnham AP, Hawley JA, et al. Low muscle glycogen concentration does not suppress the anabolic response to resistance exercise. J Appl Physiol (1985). 2012;113(2):206-14. Epub 2012/05/26. doi: 10.1152/japplphysiol.00395.2012. PubMed PMID: 22628371.
6. Witard OC, Jackman SR, Breen L, Smith K, Selby A, Tipton KD. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am J Clin Nutr. 2014;99(1):86-95. Epub 2013/11/22. doi: 10.3945/ajcn.112.055517. PubMed PMID: 24257722.
7. Kim PL, Staron RS, Phillips SM. Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol. 2005;568(Pt 1):283-90. Epub 2005/07/30. doi: 10.1113/jphysiol.2005.093708. PubMed PMID: 16051622; PubMed Central PMCID: PMCPMC1474760.
8. Louis M, Poortmans JR, Francaux M, Berre J, Boisseau N, Brassine E, et al. No effect of creatine supplementation on human myofibrillar and sarcoplasmic protein synthesis after resistance exercise. Am J Physiol Endocrinol Metab. 2003;285(5):E1089-94. Epub 2003/06/26. doi: 10.1152/ajpendo.00195.2003. PubMed PMID: 12824083.
9. Moore DR, Phillips SM, Babraj JA, Smith K, Rennie MJ. Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am J Physiol Endocrinol Metab. 2005;288(6):E1153-9. Epub 2004/12/02. doi: 10.1152/ajpendo.00387.2004. PubMed PMID: 15572656.
10. Cuthbertson DJ, Babraj J, Smith K, Wilkes E, Fedele MJ, Esser K, et al. Anabolic signaling and protein synthesis in human skeletal muscle after dynamic shortening or lengthening exercise. Am J Physiol Endocrinol Metab. 2006;290(4):E731-8. Epub 2005/11/03. doi: 10.1152/ajpendo.00415.2005. PubMed PMID: 16263770.
11. West DW, Kujbida GW, Moore DR, Atherton P, Burd NA, Padzik JP, et al. Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol. 2009;587(Pt 21):5239-47. Epub 2009/09/09. doi: 10.1113/jphysiol.2009.177220. PubMed PMID: 19736298; PubMed Central PMCID: PMCPMC2790261.
12. Burd NA, Holwerda AM, Selby KC, West DW, Staples AW, Cain NE, et al. Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol. 2010;588(Pt 16):3119-30. Epub 2010/06/29. doi: 10.1113/jphysiol.2010.192856. PubMed PMID: 20581041; PubMed Central PMCID: PMCPMC2956949.
13. Roberts MD, Romero MA, Mobley CB, Mumford PW, Roberson PA, Haun CT, et al. Skeletal muscle mitochondrial volume and myozenin-1 protein differences exist between high versus low anabolic responders to resistance training. PeerJ. 2018;6:e5338. Epub 2018/08/02. doi: 10.7717/peerj.5338. PubMed PMID: 30065891; PubMed Central PMCID: PMCPMC6065464.
14. Willoughby DS, Nelson MJ. Myosin heavy-chain mRNA expression after a single session of heavy-resistance exercise. Med Sci Sports Exerc. 2002;34(8):1262-9. Epub 2002/08/08. PubMed PMID: 12165680.
15. Willoughby DS, Priest JW, Nelson M. Expression of the stress proteins, ubiquitin, heat shock protein 72, and myofibrillar protein content after 12 weeks of leg cycling in persons with spinal cord injury. Arch Phys Med Rehabil. 2002;83(5):649-54. Epub 2002/05/08. PubMed PMID: 11994804.
16. Willoughby DS, Rosene J. Effects of oral creatine and resistance training on myosin heavy chain expression. Med Sci Sports Exerc. 2001;33(10):1674-81. Epub 2001/10/03. PubMed PMID: 11581551.
17. Haus JM, Carrithers JA, Carroll CC, Tesch PA, Trappe TA. Contractile and connective tissue protein content of human skeletal muscle: effects of 35 and 90 days of simulated microgravity and exercise countermeasures. Am J Physiol Regul Integr Comp Physiol. 2007;293(4):R1722-7. Epub 2007/08/03. doi: 10.1152/ajpregu.00292.2007. PubMed PMID: 17670860.
18. Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Szewczyk NJ, Greenhaff PL, et al. Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. FASEB J. 2015;29(11):4485-96. doi: 10.1096/fj.15-273755. PubMed PMID: 26169934.
19. Carrithers JA, Tesch PA, Trieschmann J, Ekberg A, Trappe TA. Skeletal muscle protein composition following 5 weeks of ULLS and resistance exercise countermeasures. J Gravit Physiol. 2002;9(1):P155-6. Epub 2004/03/09. PubMed PMID: 15002527.
20. Cribb PJ, Hayes A. Effects of supplement timing and resistance exercise on skeletal muscle hypertrophy. Med Sci Sports Exerc. 2006;38(11):1918-25. Epub 2006/11/11. doi: 10.1249/01.mss.0000233790.08788.3e. PubMed PMID: 17095924.
21. Woolstenhulme MT, Conlee RK, Drummond MJ, Stites AW, Parcell AC. Temporal response of desmin and dystrophin proteins to progressive resistance exercise in human skeletal muscle. J Appl Physiol (1985). 2006;100(6):1876-82. Epub 2006/01/28. doi: 10.1152/japplphysiol.01592.2005. PubMed PMID: 16439510.
22. Haun CT, Vann CG, Roberts BM, Vigotsky AD, Schoenfeld BJ, Roberts MD. A Critical Evaluation of the Biological Construct Skeletal Muscle Hypertrophy: Size Matters but So Does the Measurement. Front Physiol. 2019;10:247. Epub 2019/04/02. doi: 10.3389/fphys.2019.00247. PubMed PMID: 30930796; PubMed Central PMCID: PMCPMC6423469.
23. Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, et al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol. 2009;185(6):1083-95. doi: 10.1083/jcb.200901052. PubMed PMID: 19506036; PubMed Central PMCID: PMCPMC2711608.
24. Moore DR, Tang JE, Burd NA, Rerecich T, Tarnopolsky MA, Phillips SM. Differential stimulation of myofibrillar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise. J Physiol. 2009;587(Pt 4):897-904. Epub 2009/01/07. doi: 10.1113/jphysiol.2008.164087. PubMed PMID: 19124543; PubMed Central PMCID: PMCPMC2669978.
25. Burd NA, Andrews RJ, West DW, Little JP, Cochran AJ, Hector AJ, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(2):351-62. Epub 2011/11/23. doi: 10.1113/jphysiol.2011.221200. PubMed PMID: 22106173; PubMed Central PMCID: PMCPMC3285070.
26. Damas F, Phillips SM, Libardi CA, Vechin FC, Lixandrao ME, Jannig PR, et al. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J Physiol. 2016;594(18):5209-22. Epub 2016/05/25. doi: 10.1113/JP272472. PubMed PMID: 27219125; PubMed Central PMCID: PMCPMC5023708.
27. Mobley CB, Mumford PW, Kephart WC, Haun CT, Holland AM, Beck DT, et al. Aging in Rats Differentially Affects Markers of Transcriptional and Translational Capacity in Soleus and Plantaris Muscle. Front Physiol. 2017;8:518. Epub 2017/08/05. doi: 10.3389/fphys.2017.00518. PubMed PMID: 28775694; PubMed Central PMCID: PMCPMC5517446.
28. Mumford PW, Romero MA, Osburn SC, Roberson PA, Vann CG, Mobley CB, et al. Skeletal muscle LINE-1 retrotransposon activity is upregulated in older versus younger rats. Am J Physiol Regul Integr Comp Physiol. 2019;317(3):R397-R406. Epub 2019/06/13. doi: 10.1152/ajpregu.00110.2019. PubMed PMID: 31188650.
29. Haun CT, Vann CG, Mobley CB, Roberson PA, Osburn SC, Holmes HM, et al. Effects of Graded Whey Supplementation During Extreme-Volume Resistance Training. Front Nutr. 2018;5:84. Epub 2018/09/27. doi: 10.3389/fnut.2018.00084. PubMed PMID: 30255024; PubMed Central PMCID: PMCPMC6141782.
30. Yasui K, Uegaki M, Shiraki K, Ishimizu T. Enhanced solubilization of membrane proteins by alkylamines and polyamines. Protein Sci. 2010;19(3):486-93. Epub 2010/01/08. doi: 10.1002/pro.326. PubMed PMID: 20054831; PubMed Central PMCID: PMCPMC2866274.
31. Zergeroglu MA, McKenzie MJ, Shanely RA, Van Gammeren D, DeRuisseau KC, Powers SK. Mechanical ventilation-induced oxidative stress in the diaphragm. J Appl Physiol (1985). 2003;95(3):1116-24. Epub 2003/06/05. doi: 10.1152/japplphysiol.00824.2002. PubMed PMID: 12777408.
32. Shelmadine B, Cooke M, Buford T, Hudson G, Redd L, Leutholtz B, et al. Effects of 28 days of resistance exercise and consuming a commercially available pre-workout supplement, NO-Shotgun(R), on body composition, muscle strength and mass, markers of satellite cell activation, and clinical safety markers in males. J Int Soc Sports Nutr. 2009;6:16. Epub 2009/08/07. doi: 10.1186/1550-2783-6-16. PubMed PMID: 19656392; PubMed Central PMCID: PMCPMC2731073.
33. Kopec AM, Rivera PD, Lacagnina MJ, Hanamsagar R, Bilbo SD. Optimized solubilization of TRIzol-precipitated protein permits Western blotting analysis to maximize data available from brain tissue. J Neurosci Methods. 2017;280:64-76. Epub 2017/02/14. doi: 10.1016/j.jneumeth.2017.02.002. PubMed PMID: 28192129; PubMed Central PMCID: PMCPMC5392113.
34. Hummon AB, Lim SR, Difilippantonio MJ, Ried T. Isolation and solubilization of proteins after TRIzol extraction of RNA and DNA from patient material following prolonged storage. Biotechniques. 2007;42(4):467-70, 72. Epub 2007/05/11. doi: 10.2144/000112401. PubMed PMID: 17489233; PubMed Central PMCID: PMCPMC4721573.