Establishment of a Drosophila AD model

Main Article Content

Xingjun Wang
Yu Zhao
Yujia Hu
Pu Ren
Ying Sun
Xiaowei Guo
Xirui Huang
Yumeng Zhu
Xinhong Chen
Yu Feng
Lei Xue

Keywords

Drosophila, APP, Alzheimer, AD, model

Abstract

Alzheimer’s Disease (AD) is the most common form of dementia that affects people’s health greatly. Though amyloid precursor protein (APP) has been implicated in the pathogenesis of AD, the exact role of APP and its underlying mechanism in AD progression have remained largely elusive. Drosophila melanogaster has been extensively used as a model organism to study a wide range of human diseases including AD. In this protocol, we expressed full length human APP in the Drosophila nervous system and examined its effect on locomotion and choice ability. We found that expression of APP produced locomotion defects in larvae as measured by plate crawling ability assay (PCA), and in adult flies as monitored by plate cycling ability assay (CLA). In addition, expression of APP results in male courtship choice (MCC) defect, since wild-type males court preferentially toward young virgin females over old ones, while APP-expressing males failed to show this preference. This protocol enables us to screen for novel AD candidate genes as well as therapeutic compounds to ameliorate the disease.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
Abstract 48 | HTML Downloads 150 PDF Downloads 151 Supplementary information Downloads 0

References

1 Alzheimer, A., Stelzmann, R. A., Schnitzlein, H. N. & Murtagh, F. R. An English translation of Alzheimer's 1907 paper, "Uber eine eigenartige Erkankung der Hirnrinde". Clinical anatomy 8, 429-431, doi:10.1002/ca.980080612 (1995).
2 Zhagn, L. & Li, Z. [Alzheimer and the discovery of Alzheimer's disease]. Zhonghua yi shi za zhi 44, 288-290 (2014).
3 Morris, R. G. & Salmon, D. P. The centennial of Alzheimer's disease and the publication of "Uber eine eigenartige Erkankung der Hirnrinde" by Alois Alzheimer. Cortex; a journal devoted to the study of the nervous system and behavior 43, 821-825 (2007).
4 DeKosky, S. T. & Scheff, S. W. Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity. Annals of neurology 27, 457-464, doi:10.1002/ana.410270502 (1990).
5 Trojanowski, J. Q. & Lee, V. M. Paired helical filament tau in Alzheimer's disease. The kinase connection. The American journal of pathology 144, 449-453 (1994).
6 Okuzumi, H. et al. Characteristics of postural control and locomotion of patients with vascular and Alzheimer-type dementias. Perceptual and motor skills 84, 16-18, doi:10.2466/pms.1997.84.1.16 (1997).
7 Glenner, G. G. & Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and biophysical research communications 120, 885-890 (1984).
8 Glenner, G. G. & Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. 1984. Biochemical and biophysical research communications 425, 534-539, doi:10.1016/j.bbrc.2012.08.020 (2012).
9 Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733-736, doi:10.1038/325733a0 (1987).
10 Golde, T. E. The Abeta hypothesis: leading us to rationally-designed therapeutic strategies for the treatment or prevention of Alzheimer disease. Brain pathology 15, 84-87 (2005).
11 Tanzi, R. E. The synaptic Abeta hypothesis of Alzheimer disease. Nature neuroscience 8, 977-979, doi:10.1038/nn0805-977 (2005).
12 Ferreira, S. T. & Klein, W. L. The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease. Neurobiology of learning and memory 96, 529-543, doi:10.1016/j.nlm.2011.08.003 (2011).
13 Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T. & Hyman, B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42, 631-639 (1992).
14 Holmes, C. et al. Long-term effects of Abeta42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372, 216-223, doi:10.1016/S0140-6736(08)61075-2 (2008).
15 Nikolaev, A., McLaughlin, T., O'Leary, D. D. & Tessier-Lavigne, M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981-989, doi:10.1038/nature07767 (2009).
16 Gunawardena, S. & Goldstein, L. S. Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389-401 (2001).
17 Wang, X. et al. FoxO mediates APP-induced AICD-dependent cell death. Cell death & disease 5, e1233, doi:10.1038/cddis.2014.196 (2014).
18 Cao, W. et al. Identification of novel genes that modify phenotypes induced by Alzheimer's beta-amyloid overexpression in Drosophila. Genetics 178, 1457-1471, doi:10.1534/genetics.107.078394 (2008).
19 Steffensmeier, A. M. et al. Novel neuroprotective function of apical-basal polarity gene crumbs in amyloid beta 42 (abeta42) mediated neurodegeneration. PloS one 8, e78717, doi:10.1371/journal.pone.0078717 (2013).
20 Moran, M. T., Tare, M., Kango-Singh, M. & Singh, A. Homeotic Gene teashirt (tsh) has a neuroprotective function in amyloid-beta 42 mediated neurodegeneration. PloS one 8, e80829, doi:10.1371/journal.pone.0080829 (2013).
21 Tare, M. et al. Activation of JNK signaling mediates amyloid-ss-dependent cell death. PloS one 6, e24361, doi:10.1371/journal.pone.0024361 (2011).
22 Hu, Y., Han, Y., Wang, X. & Xue, L. Aging-related neurodegeneration eliminates male courtship choice in Drosophila. Neurobiology of aging 35, 2174-2178, doi:10.1016/j.neurobiolaging.2014.02.026 (2014).
23 Hu, Y. et al. Gr33a modulates Drosophila male courtship preference. Scientific reports 5, 7777, doi:10.1038/srep07777 (2015).
24 Fang, Y., Soares, L. & Bonini, N. M. Design and implementation of in vivo imaging of neural injury responses in the adult Drosophila wing. Nature protocols 8, 810-819 (2013).
25 Rosen, D. R., Martin-Morris, L., Luo, L. Q. & White, K. A Drosophila gene encoding a protein resembling the human beta-amyloid protein precursor. Proceedings of the National Academy of Sciences of the United States of America 86, 2478-2482 (1989).
26 Luo, L. Q., Martin-Morris, L. E. & White, K. Identification, secretion, and neural expression of APPL, a Drosophila protein similar to human amyloid protein precursor. The Journal of neuroscience : the official journal of the Society for Neuroscience 10, 3849-3861 (1990).
27 Martin-Morris, L. E. & White, K. The Drosophila transcript encoded by the beta-amyloid protein precursor-like gene is restricted to the nervous system. Development 110, 185-195 (1990).
28 Alzheimer's, A. 2014 Alzheimer's disease facts and figures. Alzheimer's & dementia : the journal of the Alzheimer's Association 10, e47-92 (2014).
29 Le Bourg, E. & Lints, F. A. Hypergravity and aging in Drosophila melanogaster. 4. Climbing activity. Gerontology 38, 59-64 (1992).
30 Liu, Y., Liu, F., Iqbal, K., Grundke-Iqbal, I. & Gong, C. X. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS letters 582, 359-364, doi:10.1016/j.febslet.2007.12.035 (2008).
31 Perez, M., Moran, M. A., Ferrer, I., Avila, J. & Gomez-Ramos, P. Phosphorylated tau in neuritic plaques of APP(sw)/Tau (vlw) transgenic mice and Alzheimer disease. Acta neuropathologica 116, 409-418, doi:10.1007/s00401-008-0420-0 (2008).
32 Ballatore, C., Lee, V. M. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature reviews. Neuroscience 8, 663-672, doi:10.1038/nrn2194 (2007).
33 Obulesu, M., Venu, R. & Somashekhar, R. Tau mediated neurodegeneration: an insight into Alzheimer's disease pathology. Neurochemical research 36, 1329-1335, doi:10.1007/s11064-011-0475-5 (2011).
34 Duan, Y., Dong, S., Gu, F., Hu, Y. & Zhao, Z. Advances in the pathogenesis of Alzheimer's disease: focusing on tau-mediated neurodegeneration. Translational neurodegeneration 1, 24, doi:10.1186/2047-9158-1-24 (2012).
35 Borroni, B. et al. APOE genotype and cholesterol levels in lewy body dementia and Alzheimer disease: investigating genotype-phenotype effect on disease risk. The American journal of geriatric psychiatry : official journal of the American Association for Geriatric Psychiatry 14, 1022-1031, doi:10.1097/01.JGP.0000225088.29353.08 (2006).
36 Borroni, B., Di Luca, M. & Padovani, A. The effect of APOE genotype on clinical phenotype in Alzheimer disease. Neurology 68, 624; author reply 624, doi:10.1212/01.wnl.0000258354.96336.97 (2007).
37 Roses, A. D. Apolipoprotein E affects the rate of Alzheimer disease expression: beta-amyloid burden is a secondary consequence dependent on APOE genotype and duration of disease. Journal of neuropathology and experimental neurology 53, 429-437 (1994).
38 Xu, M. et al. gamma-Secretase: characterization and implication for Alzheimer disease therapy. Neurobiology of aging 23, 1023-1030 (2002).
39 Li, Y. M. Gamma-secretase: a catalyst of Alzheimer disease and signal transduction. Molecular interventions 1, 198-207 (2001).
40 Torroja, L., Packard, M., Gorczyca, M., White, K. & Budnik, V. The Drosophila beta-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction. The Journal of neuroscience : the official journal of the Society for Neuroscience 19, 7793-7803 (1999).