Open source and DIY hardware for DNA nanotechnology labs

Main Article Content

Tulsi R. Damase
Daniel Stephens
Adam Spencer
Peter B. Allen

Keywords

DNA, DNA nanotechnology, open source, open source scientific hardware

Abstract

A set of instruments and specialized equipment is necessary to equip a laboratory to work with DNA. Reducing the barrier to entry for DNA manipulation should enable and encourage new labs to enter the field. We present three examples of open source/DIY technology with significantly reduced costs relative to commercial equipment. This includes a gel scanner, a horizontal PAGE gel mold, and a homogenizer for generating DNA-coated particles. The overall cost savings obtained by using open source/DIY equipment was between 50 and 90%.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
Abstract 441 | HTML Downloads 203 PDF Downloads 221 File S2 Downloads 0 File S1 Downloads 0 Supplementary information Downloads 0

References

1. Bercovici M, Lele SK, Santiago JG. Open source simulation tool for electrophoretic stacking, focusing, and separation. J Chromatogr A. 2009;1216: 1008–1018. doi:10.1016/j.chroma.2008.12.022
2. Pearce JM. Building Research Equipment with Free, Open-Source Hardware. Science. 2012;337: 1303–1304. doi:10.1126/science.1228183
3. Hienerth C, von Hippel E, Berg Jensen M. User community vs. producer innovation development efficiency: A first empirical study. Res Policy. 2014;43: 190–201. doi:10.1016/j.respol.2013.07.010
4. Pearce JM. Laboratory equipment: Cut costs with open-source hardware. Nature. 2014;505: 618–618. doi:10.1038/505618d
5. Zhang C, Anzalone NC, Faria RP, Pearce JM. Open-Source 3D-Printable Optics Equipment. PLoS ONE. 2013;8: e59840. doi:10.1371/journal.pone.0059840
6. Wijnen B, Hunt EJ, Anzalone GC, Pearce JM. Open-Source Syringe Pump Library. PLoS ONE. 2014;9: e107216. doi:10.1371/journal.pone.0107216
7. Jones R, Haufe P, Sells E, Iravani P, Olliver V, Palmer C, et al. RepRap – the replicating rapid prototyper. Robotica. 2011;29: 177–191. doi:10.1017/S026357471000069X
8. Macdonald J, Li Y, Sutovic M, Lederman H, Pendri K, Lu W, et al. Medium Scale Integration of Molecular Logic Gates in an Automaton. Nano Lett. 2006;6: 2598–2603. doi:10.1021/nl0620684
9. Langecker M, Arnaut V, Martin TG, List J, Renner S, Mayer M, et al. Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures. Science. 2012;338: 932–936. doi:10.1126/science.1225624
10. Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 2009;459: 73–76. doi:10.1038/nature07971
11. Allen PB, Arshad SA, Li B, Chen X, Ellington A. DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform. Lab Chip. 2012; doi:10.1039/C2LC40373K
12. Li B, Ellington AD, Chen X. Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic Acids Res. 2011; doi:10.1093/nar/gkr504
13. Chen X, Briggs N, McLain JR, Ellington AD. Stacking nonenzymatic circuits for high signal gain. Proc Natl Acad Sci U S A. 2013;110: 5386–5391. doi:10.1073/pnas.1222807110
14. Chen Y-J, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik D, et al. Programmable chemical controllers made from DNA. Nat Nanotechnol. 2013;8: 755–762. doi:10.1038/nnano.2013.189
15. Bellomy GR, Record MT. A method for horizontal polyacrylamide slab gel electrophoresis. BioTechniques. 1989;7: 16, 19–21.
16. Chen X. Expanding the Rule Set of DNA Circuitry with Associative Toehold Activation. J Am Chem Soc. 2012;134: 263–271. doi:10.1021/ja206690a
17. Yin P, Choi HMT, Calvert CR, Pierce NA. Programming biomolecular self-assembly pathways. Nature. 2008;451: 318–322. doi:10.1038/nature06451
18. Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL. A DNA-fuelled molecular machine made of DNA. Nature. 2000;406: 605–608. doi:10.1038/35020524
19. Allen PB, Khaing Z, Schmidt CE, Ellington AD. 3D Printing with Nucleic Acid Adhesives. ACS Biomater Sci Eng. 2014;1: 19–26. doi:10.1021/ab500026f
20. Rehman FN, Audeh M, Abrams ES, Hammond PW, Kenney M, Boles TC. Immobilization of acrylamide-modified oligonucleotides by co-polymerization. Nucleic Acids Res. 1999;27: 649–655. doi:10.1093/nar/27.2.649
21. Kuo T-C. Streamlined method for purifying single-stranded DNA from PCR products for frequent or high-throughput needs. BioTechniques. 2005;38: 700, 702.
22. Rogers PH, Michel E, Bauer CA, Vanderet S, Hansen D, Roberts BK, et al. Selective, Controllable, and Reversible Aggregation of Polystyrene Latex Microspheres via DNA Hybridization. Langmuir. 2005;21: 5562–5569. doi:10.1021/la046790y
23. Arndt-Jovin DJ, Jovin TM, Bähr W, Marquardt M, Frischauf A-M. Covalent Attachment of DNA to Agarose. Eur J Biochem. 1975;54: 411–418. doi:10.1111/j.1432-1033.1975.tb04151.x
24. Tang H, Deschner R, Allen P, Cho Y, Sermas P, Maurer A, et al. Analysis of DNA-Guided Self-Assembly of Microspheres Using Imaging Flow Cytometry. J Am Chem Soc. 2012; 15245–15248. doi:10.1021/ja3066896
25. Pearce J. Open-source lab: how to build your own hardware and reduce research costs. 2013.
26. Anzalone GC, Glover AG, Pearce JM. Open-Source Colorimeter. Sensors. 2013;13: 5338–5346. doi:10.3390/s130405338