A simplified design for the C. elegans lifespan machine

Authors

  • Mark Abbott Rutgers University
  • Stephen A. Banse Oregon University
  • Ilija Melentijevic Rutgers University
  • Cody M. Jarrett Oregon University
  • Jonathan St. Ange Rutgers University
  • Christine A. Sedore Oregon University
  • Ron Falkowski Rutgers University
  • Benjamin W. Blue Oregon University
  • Anna L. Coleman-Hulbert Oregon University
  • Erik Johnson Oregon University
  • Max Guo National Institute on Aging
  • Gordon J. Lithgow Buck Institute
  • Patrick C. Phillips Oregon University
  • Monica Driscoll Rutgers University

DOI:

https://doi.org/10.14440/jbm.2020.332

Keywords:

Caenorhabditis elegans, lifespan machine, automation, aging, longevity, anti-aging interventions

Abstract

Caenorhabditis elegans (C. elegans) lifespan assays constitute a broadly used approach for investigating the fundamental biology of longevity. Traditional C. elegans lifespan assays require labor-intensive microscopic monitoring of individual animals to evaluate life/death over a period of weeks, making large-scale high throughput studies impractical. The lifespan machine developed by Stroustrup et al. (2013) adapted flatbed scanner technologies to contribute a major technical advance in the efficiency of C. elegans survival assays. Introducing a platform in which large portions of a lifespan assay are automated enabled longevity studies of a scope not possible with previous exclusively manual assays and facilitated novel discovery. Still, as initially described, constructing and operating scanner-based lifespan machines requires considerable effort and expertise. Here we report on design modifications that simplify construction, decrease cost, eliminate certain mechanical failures, and decrease assay workload requirements. The modifications we document should make the lifespan machine more accessible to interested laboratories.

References

Sutphin GL, Kaeberlein M. Measuring Caenorhabditis elegans life span on solid media. J Vis Exp. 2009; 1–7. doi:10.3791/1152 19488025

Hulme SE, Shevkoplyas SS, McGuigan AP, Apfeld J, Fontana W, Whitesides GM. Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. Lab Chip. 2010;10: 589–97. doi:10.1039/b919265d 20162234

Churgin MA, Jung SK, Yu CC, Chen X, Raizen DM, Fang-Yen C. Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. Elife. 2017;6: 1–25. doi:10.7554/eLife.26652 28537553

Stroustrup N, Ulmschneider BE, Nash ZM, López-Moyado IF, Apfeld J, Fontana W. The Caenorhabditis elegans Lifespan Machine. Nat Methods. 2013;10: 665–70. doi:10.1038/nmeth.2475 23666410

Stroustrup N, Anthony WE, Nash ZM, Gowda V, Gomez A, López-Moyado IF, et al. The temporal scaling of Caenorhabditis elegans ageing. Nature. Nature Publishing Group; 2016;530: 103–7. doi:10.1038/nature16550 26814965

Banse SA, Lucanic M, Sedore CA, Coleman-Hulbert AL, Plummer WT, Chen E, et al. Automated lifespan determination across Caenorhabditis strains and species reveals assay-specific effects of chemical interventions. GeroScience. 2019;41: 945–960. doi:10.1007/s11357-019-00108-9 31820364

Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77: 71–94. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1213120&tool=pmcentrez&rendertype=abstract 4366476

Yoshimura J, Ichikawa K, Shoura MJ, Artiles KL, Gabdank I, Wahba L, et al. Recompleting the Caenorhabditis elegans genome. Genome Res. 2019;29: 1009–1022. doi:10.1101/gr.244830.118 31123080

Caenorhabditis Intervention Testing Program. CITP Automated Lifespan Machine (ALM) SOPs [Internet]. 2019. doi:10.6084/m9.figshare.c.4580546

Banse SA, Blue BW, Robinson KJ, Jarrett CM, Phillips PC. The Stress-Chip: A microfluidic platform for stress analysis in Caenorhabditis elegans. PLoS One. 2019;14: e0216283. doi:10.1371/journal.pone.0216283. 31042764

Lucanic M, Plummer WT, Chen E, Harke J, Foulger AC, Onken B, et al. Impact of genetic background and experimental reproducibility on identifying chemical compounds with robust longevity effects. Nat Commun. Nature Publishing Group; 2017;8: 14256. doi:10.1038/ncomms14256 28220799

Coleman-Hulbert A, Johnson E, Sedore C, Banse S, Guo M, Driscoll M, et al. Caenorhabditis Intervention Testing Program: the tyrosine kinase inhibitor imatinib mesylate does not extend lifespan in nematodes. microPublication Biol. 2019; doi:10.17912/micropub.biology.000131

Coleman-Hulbert A, Johnson E, Sedore C, Banse S, Guo M, Driscoll M, et al. Caenorhabditis Intervention Testing Program: the creatine analog β- guanidinopropionic acid does not extend lifespan in nematodes. microPublication Biol. 2020; doi:10.17912/micropub.biology.000207 31998863

Morshead, ML; Sedore, CA; Jones, EG; Hall, D; Plummer, WT; Garrett, T; Lucanic, M; Guo, M; Driscoll, M; Phillips, PC; Lithgow, G (2020). Caenorhabditis Intervention Testing Program: the farnesoid X receptor agonist obeticholic acid does not robustly extend lifespan in nematodes. microPublication Biology. 10.17912/micropub.biology.000257

Lithgow GJ, Driscoll M, Phillips P. A long journey to reproducible results. Nature. 2017;548: 387–388. doi:10.1038/548387a 28836615

De Magalhaes Filho CD, Henriquez B, Seah NE, Evans RM, Lapierre LR, Dillin A. Visible light reduces C. elegans longevity. Nat Commun. Springer US; 2018;9. doi:10.1038/s41467-018-02934-5 29500338

Downloads

Published

2020-10-26

How to Cite

1.
Abbott M, Banse SA, Melentijevic I, Jarrett CM, St. Ange J, Sedore CA, Falkowski R, Blue BW, Coleman-Hulbert AL, Johnson E, Guo M, Lithgow GJ, Phillips PC, Driscoll M. A simplified design for the C. elegans lifespan machine. J Biol Methods [Internet]. 2020Oct.26 [cited 2021Oct.21];7(4):e137. Available from: https://jbmethods.org/jbm/article/view/332

Issue

Section

Articles