Open source and DIY hardware for DNA nanotechnology labs

Authors

  • Tulsi R. Damase University of Idaho
  • Daniel Stephens University of Idaho
  • Adam Spencer University of Idaho
  • Peter B. Allen University of Idaho

DOI:

https://doi.org/10.14440/jbm.2015.72

Keywords:

DNA, DNA nanotechnology, open source, open source scientific hardware

Abstract

A set of instruments and specialized equipment is necessary to equip a laboratory to work with DNA. Reducing the barrier to entry for DNA manipulation should enable and encourage new labs to enter the field. We present three examples of open source/DIY technology with significantly reduced costs relative to commercial equipment. This includes a gel scanner, a horizontal PAGE gel mold, and a homogenizer for generating DNA-coated particles. The overall cost savings obtained by using open source/DIY equipment was between 50 and 90%.

Author Biography

Peter B. Allen, University of Idaho

Department of Chemistry

Assistant Professor

References

Bercovici M, Lele SK, Santiago JG. Open source simulation tool for electrophoretic stacking, focusing, and separation. J Chromatogr A. 2009;1216: 1008–1018. doi:10.1016/j.chroma.2008.12.022

Pearce JM. Building Research Equipment with Free, Open-Source Hardware. Science. 2012;337: 1303–1304. doi:10.1126/science.1228183

Hienerth C, von Hippel E, Berg Jensen M. User community vs. producer innovation development efficiency: A first empirical study. Res Policy. 2014;43: 190–201. doi:10.1016/j.respol.2013.07.010

Pearce JM. Laboratory equipment: Cut costs with open-source hardware. Nature. 2014;505: 618–618. doi:10.1038/505618d

Zhang C, Anzalone NC, Faria RP, Pearce JM. Open-Source 3D-Printable Optics Equipment. PLoS ONE. 2013;8: e59840. doi:10.1371/journal.pone.0059840

Wijnen B, Hunt EJ, Anzalone GC, Pearce JM. Open-Source Syringe Pump Library. PLoS ONE. 2014;9: e107216. doi:10.1371/journal.pone.0107216

Jones R, Haufe P, Sells E, Iravani P, Olliver V, Palmer C, et al. RepRap – the replicating rapid prototyper. Robotica. 2011;29: 177–191. doi:10.1017/S026357471000069X

Macdonald J, Li Y, Sutovic M, Lederman H, Pendri K, Lu W, et al. Medium Scale Integration of Molecular Logic Gates in an Automaton. Nano Lett. 2006;6: 2598–2603. doi:10.1021/nl0620684

Langecker M, Arnaut V, Martin TG, List J, Renner S, Mayer M, et al. Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures. Science. 2012;338: 932–936. doi:10.1126/science.1225624

Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, et al. Self-assembly of a nanoscale DNA box with a controllable lid. Nature. 2009;459: 73–76. doi:10.1038/nature07971

Allen PB, Arshad SA, Li B, Chen X, Ellington A. DNA circuits as amplifiers for the detection of nucleic acids on a paperfluidic platform. Lab Chip. 2012; doi:10.1039/C2LC40373K

Li B, Ellington AD, Chen X. Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods. Nucleic Acids Res. 2011; doi:10.1093/nar/gkr504

Chen X, Briggs N, McLain JR, Ellington AD. Stacking nonenzymatic circuits for high signal gain. Proc Natl Acad Sci U S A. 2013;110: 5386–5391. doi:10.1073/pnas.1222807110

Chen Y-J, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik D, et al. Programmable chemical controllers made from DNA. Nat Nanotechnol. 2013;8: 755–762. doi:10.1038/nnano.2013.189

Bellomy GR, Record MT. A method for horizontal polyacrylamide slab gel electrophoresis. BioTechniques. 1989;7: 16, 19–21.

Chen X. Expanding the Rule Set of DNA Circuitry with Associative Toehold Activation. J Am Chem Soc. 2012;134: 263–271. doi:10.1021/ja206690a

Yin P, Choi HMT, Calvert CR, Pierce NA. Programming biomolecular self-assembly pathways. Nature. 2008;451: 318–322. doi:10.1038/nature06451

Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL. A DNA-fuelled molecular machine made of DNA. Nature. 2000;406: 605–608. doi:10.1038/35020524

Allen PB, Khaing Z, Schmidt CE, Ellington AD. 3D Printing with Nucleic Acid Adhesives. ACS Biomater Sci Eng. 2014;1: 19–26. doi:10.1021/ab500026f

Rehman FN, Audeh M, Abrams ES, Hammond PW, Kenney M, Boles TC. Immobilization of acrylamide-modified oligonucleotides by co-polymerization. Nucleic Acids Res. 1999;27: 649–655. doi:10.1093/nar/27.2.649

Kuo T-C. Streamlined method for purifying single-stranded DNA from PCR products for frequent or high-throughput needs. BioTechniques. 2005;38: 700, 702.

Rogers PH, Michel E, Bauer CA, Vanderet S, Hansen D, Roberts BK, et al. Selective, Controllable, and Reversible Aggregation of Polystyrene Latex Microspheres via DNA Hybridization. Langmuir. 2005;21: 5562–5569. doi:10.1021/la046790y

Arndt-Jovin DJ, Jovin TM, Bähr W, Marquardt M, Frischauf A-M. Covalent Attachment of DNA to Agarose. Eur J Biochem. 1975;54: 411–418. doi:10.1111/j.1432-1033.1975.tb04151.x

Tang H, Deschner R, Allen P, Cho Y, Sermas P, Maurer A, et al. Analysis of DNA-Guided Self-Assembly of Microspheres Using Imaging Flow Cytometry. J Am Chem Soc. 2012; 15245–15248. doi:10.1021/ja3066896

Pearce J. Open-source lab: how to build your own hardware and reduce research costs. 2013.

Anzalone GC, Glover AG, Pearce JM. Open-Source Colorimeter. Sensors. 2013;13: 5338–5346. doi:10.3390/s130405338

Downloads

Published

2015-08-31

How to Cite

1.
Damase TR, Stephens D, Spencer A, Allen PB. Open source and DIY hardware for DNA nanotechnology labs. J Biol Methods [Internet]. 2015Aug.31 [cited 2021Jul.28];2(3):e24. Available from: https://jbmethods.org/jbm/article/view/72

Issue

Section

Articles