Journal of Biological Methods <p>The <em>Journal of Biological Methods (JBM) </em>(ISSN 2326-9901) is a multidisciplinary and open-access journal committed to publishing peer-reviewed papers on cutting-edge and innovative biological techniques, methods and protocols.</p> <p>JBM has been included by the following indexing and archiving services: Google Scholar, CrossRef, OCLC, Portico and SHERPA/RoMEO, BIOSIS Previews and Biological Abstracts.</p> <p><sup><span style="background-color: #ffff00;">New</span></sup> JBM has now been indexed by PubMed Central (PMC) and all papers are also searchable in PubMed.</p> <div style="margin: 0 auto; text-align: center; overflow: hidden; border-radius: 0px; background: #367e32; border: 0px solid #000000; padding: 5px; max-width: calc(100% - 10px); width: 740px;"> <div style="display: inline-block; text-shadow: #decf1b 4px 4px 4px; position: relative; vertical-align: middle; padding: 9px; font-size: 30px; color: #ffffff; font-weight: bold;">COVID 19 Special Issue - Call for Papers</div> <div style="display: inline-block; position: relative; vertical-align: middle; padding: 17px; font-size: 16px; color: #ffffff; font-weight: normal;">JBM is now accepting manuscripts to be published in a COVID 19 Special Issue</div> </div> en-US <p>Authors who publish with JBM agree to the following terms:</p> <ol> <li>Authors retain copyright and grant JBM right of first publication with the work simultaneously licensed under a <a href="">Creative Commons Attribution License</a> that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.</li> <li>Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.</li> <li>Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See <a href="" target="_new">The Effect of Open Access</a>).</li> </ol> (JBM Editorial Office) (JBM Technical Support) Wed, 08 Jun 2022 14:58:59 -0700 OJS 60 Methodology for measuring oxidative capacity of isolated peroxisomes in the Seahorse assay <p>The regulation of cellular energetics is a complex process that requires the coordinated function of multiple organelles. Historically, studies focused on understanding cellular energy utilization and production have been overwhelmingly concentrated on the mitochondria. While mitochondria account for the majority of intracellular energy production, they alone are incapable of maintaining the variable energetic demands of the cell. The peroxisome has recently emerged as a secondary metabolic organelle that complements and improves mitochondrial performance. Although mitochondria and peroxisomes are structurally distinct organelles, they share key functional similarities that allows for the potential to repurpose readily available tools initially developed for mitochondrial assessment to interrogate peroxisomal metabolic function in a novel manner. To this end, we report here on procedures for the isolation, purification and real-time metabolic assessment of peroxisomal β-oxidation using the Agilent Seahorse® system. When used together, these protocols provide a straightforward, reproducible and highly quantifiable method for measuring the contributions of peroxisomes to cellular and organismal metabolism.</p> Brittany A. Stork, Adam Dean, Brian York Copyright (c) 2022 Brittany A. Stork, Adam Dean, Brian York Wed, 08 Jun 2022 00:00:00 -0700 An experimental method for evoking and characterizing dynamic color patterning of cuttlefish during prey capture <p>Cuttlefish are active carnivores that possess a wide repertoire of body patterns that can be changed within milliseconds for many types of camouflage and communication. The forms and functions of many body patterns are well known from ethological studies in the field and laboratory. Yet one aspect has not been reported in detail: the category of rapid, brief and high-contrast changes in body coloration (“Tentacle Shot Patterns” or TSPs) that always occur with the ejection of two ballistic tentacles to strike live moving prey (“Tentacles Go Ballistic” or TGB moment). We designed and tested a mechanical device that presented prey in a controlled manner, taking advantage of a key stimulus for feeding: motion of the prey. High-speed video recordings show a rapid transition into TSPs starting 114 ms before TGB (<em>N</em> = 114). TSPs are then suppressed as early as 470–500 ms after TGB (<em>P</em> &lt; 0.05) in unsuccessful hunts, while persisting for at least 3 s after TGB in successful hunts. A granularity analysis revealed significant differences in the large-scale high-contrast body patterning present in TSPs compared to the camouflage body pattern deployed beforehand. TSPs best fit the category of secondary defense called deimatic displaying, meant to briefly startle predators and interrupt their attack sequence while cuttlefish are distracted by striking prey. We characterize TSPs as a pattern category for which the main distinguishing feature is a high-contrast signaling pattern with aspects of Acute Conflict Mottle or Acute Disruptive Pattern. The data and methodology presented here open opportunities for quantifying the rapid neural responses in this visual sensorimotor set of behaviors.</p> Danbee Kim, Kendra C. Buresch, Roger T. Hanlon, Adam R. Kampff Copyright (c) 2022 Danbee Kim, Kendra C. Buresch, Roger T. Hanlon, Adam R. Kampff Tue, 14 Jun 2022 00:00:00 -0700