High-yield purification of exceptional-quality, single-molecule DNA substrates

Main Article Content

Yue Lu
Piero Bianco

Keywords

column chromatography, DNA substrate, oligonucleotide, single-molecule, TSKgel DNA-stat

Abstract

Single-molecule studies involving DNA or RNA, require homogeneous preparations of nucleic acid substrates of exceptional quality. Over the past several years, a variety of methods have been published describing different purification methods but these are frustratingly inconsistent with variable yields even in the hands of experienced bench scientists. To address these issues, we present an optimized and straightforward, column-based approach that is reproducible and produces high yields of substrates or substrate components of exceptional quality. Central to the success of the method presented is the use of a non-porous anion exchange resin. In addition to the use of this resin, we encourage the optimization of each step in the construction of substrates. The fully optimized method produces high yields of a hairpin DNA substrate of exceptional quality. While this substrate is suitable for single-molecule, magnetic tweezer experiments, the described method is readily adaptable to the production of DNA substrates for the majority of single-molecule studies involving nucleic acids ranging in size from 70–15000 bp.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
Abstract 85 | HTML Downloads 317 PDF Downloads 420 Supplementary file Downloads 0

References

1. Sun Z, Tan HY, Bianco PR, Lyubchenko YL. Remodeling of RecG Helicase at the DNA Replication Fork by SSB Protein. Sci Rep. 2015;5:9625. PMID: 25923319
2. Zhao X, Guo S, Lu C, Chen J, Le S, Fu H, et al. Single-molecule manipulation quantification of site-specific DNA binding. Curr Opin Chem Biol. 2019;53:106-17.
3. Kaur G, Lewis JS, van Oijen AM. Shining a Spotlight on DNA: Single-Molecule Methods to Visualise DNA. Molecules. 2019;24(3). PMID: 31677535
4. Neuman KC, Nagy A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods. 2008;5(6):491-505. PMID: 18511917
5. Hodeib S, Raj S, Manosas M, Zhang W, Bagchi D, Ducos B, et al. Single molecule studies of helicases with magnetic tweezers. Methods. 2016;105:3-15. PMID: 27371121
6. Kimura Y, Bianco PR. Single molecule studies of DNA binding proteins using optical tweezers. Analyst. 2006;131(8):868-74. PMID: 17028717
7. Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC, et al. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature. 2001;409(6818):374-8. PMID: 11201750
8. Maleki P, Budhathoki JB, Roy WA, Balci H. A practical guide to studying G-quadruplex structures using single-molecule FRET. Mol Genet Genomics. 2017;292(3):483-98. PMID: 28150040
9. Roy R, Hohng S, Ha T. A practical guide to single-molecule FRET. Nat Methods. 2008;5(6):507-16. PMID: 18511918
10. Manosas M, Perumal SK, Bianco PR, Ritort F, Benkovic SJ, Croquette V. RecG and UvsW catalyse robust DNA rewinding critical for stalled DNA replication fork rescue. Nat Commun. 2013;4:2368. PMID: 24013402
11. Lionnet T, Allemand JF, Revyakin A, Strick TR, Saleh OA, Bensimon D, et al. Single-molecule studies using magnetic traps. Cold Spring Harb Protoc. 2012;2012(1):34-49. PMID: 22194259
12. White KH, Visscher K. Optical trapping and unfolding of RNA. Methods Mol Biol. 2011;783:21-43. PMID: 21909881
13. Wen JD, Manosas M, Li PT, Smith SB, Bustamante C, Ritort F, et al. Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results. Biophys J. 2007;92(9):2996-3009. PMID: 17293410
14. Papini FS, Seifert M, Dulin D. High-yield fabrication of DNA and RNA constructs for single molecule force and torque spectroscopy experiments. Nucleic Acids Res. 2019;47(22):e144. PMID: 31584079
15. Goto Y, Akahori R, Yanagi I, Takeda KI. Solid-state nanopores towards single-molecule DNA sequencing. J Hum Genet. 2020;65(1):69-77. PMID: 31420594
16. Poh JJ, Gan SK. Comparison of customized spin-column and salt-precipitation finger-prick blood DNA extraction. Biosci Rep. 2014;34(5). PMID: 25222694
17. Pederson NE. Spin-column chromatography for DNA purification. Anal Biochem. 1996;239(1):117-8.
18. Nickoloff JA. Sepharose spin column chromatography. A fast, nontoxic replacement for phenol:chloroform extraction/ethanol precipitation. Mol Biotechnol. 1994;1(1):105-8. PMID: 7859149
19. Hourfar MK, Michelsen U, Schmidt M, Berger A, Seifried E, Roth WK. High-throughput purification of viral RNA based on novel aqueous chemistry for nucleic acid isolation. Clin Chem. 2005;51(7):1217-22. PMID: 15976102
20. Vandeventer PE, Mejia J, Nadim A, Johal MS, Niemz A. DNA adsorption to and elution from silica surfaces: influence of amino acid buffers. J Phys Chem B. 2013;117(37):10742-9. PMID: 23931415
21. Noirclerc-Savoye M, Gallet B, Bernaudat F, Vernet T. Large scale purification of linear plasmid DNA for efficient high throughput cloning. Biotechnol J. 2010;5(9):978-85. PMID: 20845387
22. Bernardi G. Chromatography of nucleic acids on hydroxyapatite. Nature. 1965;206(4986):779-83. PMID: 5840127
23. Shoyab M, Sen A. The isolation of extrachromosomal DNA by hydroxyapatite chromatography. Methods Enzymol. 1979;68:199-206. PMID: 232213
24. Lechner RL, Richardson CC. A preformed, topologically stable replication fork. Characterization of leading strand DNA synthesis catalyzed by T7 DNA polymerase and T7 gene 4 protein. J Biol Chem. 1983;258(18):11185-96. PMID: 6885816
25. Andrews-Pfannkoch C, Fadrosh DW, Thorpe J, Williamson SJ. Hydroxyapatite-mediated separation of double-stranded DNA, single-stranded DNA, and RNA genomes from natural viral assemblages. Appl Environ Microbiol. 2010;76(15):5039-45. PMID: 20543058
26. Westman E, Eriksson S, Laas T, Pernemalm PA, Skold SE. Separation of DNA restriction fragments by ion-exchange chromatography on FPLC columns Mono P and Mono Q. Anal Biochem. 1987;166(1):158-71. PMID: 2890317
27. Kim Y, de la Torre A, Leal AA, Finkelstein IJ. Efficient modification of lambda-DNA substrates for single-molecule studies. Sci Rep. 2017;7(1):2071. PMID: 28522818
28. Mueller SH, Spenkelink LM, van Oijen AM, Lewis JS. Design of customizable long linear DNA substrates with controlled end modifications for single-molecule studies. Anal Biochem. 2020;592:113541. PMID: 31870680
29. Luzzietti N, Brutzer H, Klaue D, Schwarz FW, Staroske W, Clausing S, et al. Efficient preparation of internally modified single-molecule constructs using nicking enzymes. Nucleic Acids Res. 2011;39(3):e15. PMID: 21071409
30. Moriyama H, Shimada M, Muranaka K, Iwaeda T. High Speed and high resolution anion exchange chromatography for biological samples on non-porous packings. HPLC; Baltimore, MD2008.
31. Kato Y, Yamasaki Y, Onaka A, Kitamura T, Hashimoto T, Murotsu T, et al. Separation of DNA restriction fragments by high-performance ion-exchange chromatography on a non-porous ion exchanger. J Chromatogr. 1989;478(1):264-8. PMID: 2532220
32. Tellez CM, Cole KD. Method for the characterization of size-exclusion chromatography mediafor preparative purification of DNA restriction fragments. Biotechnology Techniques. 1999;13:395-401. doi: 10.1023/A:1008932407733
33. Wysoczynski CL, Roemer SC, Dostal V, Barkley RM, Churchill ME, Malarkey CS. Reversed-phase ion-pair liquid chromatography method for purification of duplex DNA with single base pair resolution. Nucleic Acids Res. 2013;41(20):e194. PMID: 24013567
34. Abdulrahman A, Ghanem A. Recent advances in chromatographic purification of plasmid DNA for gene therapy and DNA vaccines: A review. Anal Chim Acta. 2018;1025:41-57. PMID: 29801607
35. Iuliano S, Fisher JR, Chen M, Kelly WJ. Rapid analysis of a plasmid by hydrophobic-interaction chromatography with a non-porous resin. J Chromatogr A. 2002;972(1):77-86. PMID: 12395948
36. Wang Y, Sun Z, Bianco PR, Lyubchenko YL. Atomic force microscopy-based characterization of the interaction of PriA helicase with stalled DNA replication forks. J Biol Chem. 2020;295(18):6043-52. PMID: 32209655
37. Liu X, Seet JX, Shi Y, Bianco PR. Rep and UvrD Antagonize One Another at Stalled Replication Forks and This Is Exacerbated by SSB. ACS Omega. 2019;4(3):5180-96. PMID: 30949615