A simple and robust cell-based assay for the discovery of novel cytokinesis inhibitors

Authors

  • Laszlo Radnai
  • Rebecca F. Stremel
  • Thomas Vaissiere
  • Li Lin
  • Michael Cameron
  • William H. Martin
  • Gavin Rumbaugh
  • Theodore M. Kamenecka
  • Patrick R. Griffin
  • Courtney Miller The Scripps Research Institute

DOI:

https://doi.org/10.14440/jbm.2020.335

Keywords:

drug discovery, actin cytoskeleton, screening, multinucleated, cytotoxicity

Abstract

Cytokinesis is the last step of mitotic cell division that separates the cytoplasm of dividing cells. Small molecule inhibitors targeting either the elements of the regulatory pathways controlling cytokinesis, or the terminal effectors have been of interest as potential drug candidates for the treatment of various diseases. Here we present a detailed protocol for a cell-based cytokinesis assay that can be used for the discovery of novel cytokinesis inhibitors. The assay is performed in a 96-well plate format in 48 h. Living cells, nuclei and nuclei of dead cells are identified by a single staining step using three fluorescent dyes, followed by rapid live cell imaging. The primary signal is the nuclei-to-cell ratio (NCR). In the presence of cytokinesis inhibitors, this ratio increases over time, as the ratio of multinucleated cells increases in the population. The ratio of dead nuclei to total nuclei provides a simultaneous measure of cytotoxicity. A screening window coefficient (Z`) of 0.65 indicates that the assay is suitable for screening purposes, as the positive and negative controls are well-separated. EC50 values can be reliably determined in a single 96-well plate by using only six different compound concentrations, enabling the testing of 4 compounds per plate. An excellent test-retest reliability (R2 = 0.998) was found for EC50 values covering a ~1500-fold range of potencies. Established small molecule inhibitors of cytokinesis operating via direct action on actin dynamics or nonmuscle myosin II are used to demonstrate the robustness, simplicity and flexibility of the assay.

Author Biography

Courtney Miller, The Scripps Research Institute

Associate Professor

Department of Molecular Medicine

Department of Neuroscience

References

References

McIntosh JR. Mitosis. Cold Spring Harb Perspect Biol. 2016;8(9). Epub 2016/09/03. doi: 10.1101/cshperspect.a023218. PubMed PMID: 27587616; PubMed Central PMCID: PMCPMC5008068.

Verma V, Mogilner A, Maresca TJ. Classical and Emerging Regulatory Mechanisms of Cytokinesis in Animal Cells. Biology (Basel). 2019;8(3). Epub 2019/07/31. doi: 10.3390/biology8030055. PubMed PMID: 31357447; PubMed Central PMCID: PMCPMC6784142.

Leite J, Osorio DS, Sobral AF, Silva AM, Carvalho AX. Network Contractility During Cytokinesis-from Molecular to Global Views. Biomolecules. 2019;9(5). Epub 2019/05/22. doi: 10.3390/biom9050194. PubMed PMID: 31109067; PubMed Central PMCID: PMCPMC6572417.

Dekraker C, Boucher E, Mandato CA. Regulation and Assembly of Actomyosin Contractile Rings in Cytokinesis and Cell Repair. Anat Rec (Hoboken). 2018;301(12):2051-66. Epub 2018/10/13. doi: 10.1002/ar.23962. PubMed PMID: 30312008.

Liu Y, Robinson D. Recent advances in cytokinesis: understanding the molecular underpinnings. F1000Res. 2018;7. Epub 2018/12/14. doi: 10.12688/f1000research.16502.1. PubMed PMID: 30542616; PubMed Central PMCID: PMCPMC6259594.

Atilla-Gokcumen GE, Castoreno AB, Sasse S, Eggert US. Making the cut: the chemical biology of cytokinesis. ACS Chem Biol. 2010;5(1):79-90. Epub 2009/12/18. doi: 10.1021/cb900256m. PubMed PMID: 20014865; PubMed Central PMCID: PMCPMC2807474.

Young EJ, Blouin AM, Briggs SB, Sillivan SE, Lin L, Cameron MD, et al. Nonmuscle myosin IIB as a therapeutic target for the prevention of relapse to methamphetamine use. Mol Psychiatry. 2016;21(5):615-23. Epub 2015/08/05. doi: 10.1038/mp.2015.103. PubMed PMID: 26239291; PubMed Central PMCID: PMCPMC4740255.

Young EJ, Briggs SB, Rumbaugh G, Miller CA. Nonmuscle myosin II inhibition disrupts methamphetamine-associated memory in females and adolescents. Neurobiol Learn Mem. 2017;139:109-16. Epub 2017/01/14. doi: 10.1016/j.nlm.2017.01.001. PubMed PMID: 28082169; PubMed Central PMCID: PMCPMC5334279.

Doller A, Badawi A, Schmid T, Brauss T, Pleli T, zu Heringdorf DM, et al. The cytoskeletal inhibitors latrunculin A and blebbistatin exert antitumorigenic properties in human hepatocellular carcinoma cells by interfering with intracellular HuR trafficking. Exp Cell Res. 2015;330(1):66-80. Epub 2014/09/23. doi: 10.1016/j.yexcr.2014.09.010. PubMed PMID: 25240929.

Eggert US, Kiger AA, Richter C, Perlman ZE, Perrimon N, Mitchison TJ, et al. Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol. 2004;2(12):e379. Epub 2004/11/18. doi: 10.1371/journal.pbio.0020379. PubMed PMID: 15547975; PubMed Central PMCID: PMCPMC528723.

Smurnyy Y, Toms AV, Hickson GR, Eck MJ, Eggert US. Binucleine 2, an isoform-specific inhibitor of Drosophila Aurora B kinase, provides insights into the mechanism of cytokinesis. ACS Chem Biol. 2010;5(11):1015-20. Epub 2010/09/02. doi: 10.1021/cb1001685. PubMed PMID: 20804174; PubMed Central PMCID: PMCPMC3039078.

Chieffi P. Aurora B: A new promising therapeutic target in cancer. Intractable Rare Dis Res. 2018;7(2):141-4. Epub 2018/06/05. doi: 10.5582/irdr.2018.01018. PubMed PMID: 29862159; PubMed Central PMCID: PMCPMC5982624.

Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, et al. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science. 2003;299(5613):1743-7. Epub 2003/03/15. doi: 10.1126/science.1081412. PubMed PMID: 12637748.

Kepiro M, Varkuti BH, Vegner L, Voros G, Hegyi G, Varga M, et al. para-Nitroblebbistatin, the non-cytotoxic and photostable myosin II inhibitor. Angew Chem Int Ed Engl. 2014;53(31):8211-5. Epub 2014/06/24. doi: 10.1002/anie.201403540. PubMed PMID: 24954740.

Varkuti BH, Kepiro M, Horvath IA, Vegner L, Rati S, Zsigmond A, et al. A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative. Sci Rep. 2016;6:26141. Epub 2016/06/01. doi: 10.1038/srep26141. PubMed PMID: 27241904; PubMed Central PMCID: PMCPMC4886532.

Bubb MR, Senderowicz AM, Sausville EA, Duncan KL, Korn ED. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin. J Biol Chem. 1994;269(21):14869-71. Epub 1994/05/27. PubMed PMID: 8195116.

Bubb MR, Spector I, Beyer BB, Fosen KM. Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J Biol Chem. 2000;275(7):5163-70. Epub 2000/02/15. doi: 10.1074/jbc.275.7.5163. PubMed PMID: 10671562.

Brenner SL, Korn ED. Substoichiometric concentrations of cytochalasin D inhibit actin polymerization. Additional evidence for an F-actin treadmill. J Biol Chem. 1979;254(20):9982-5. Epub 1979/10/25. PubMed PMID: 489616.

Carlier MF, Criquet P, Pantaloni D, Korn ED. Interaction of cytochalasin D with actin filaments in the presence of ADP and ATP. J Biol Chem. 1986;261(5):2041-50. Epub 1986/02/15. PubMed PMID: 3944126.

Goddette DW, Frieden C. The binding of cytochalasin D to monomeric actin. Biochem Biophys Res Commun. 1985;128(3):1087-92. Epub 1985/05/16. doi: 10.1016/0006-291x(85)91051-4. PubMed PMID: 4004848.

Goddette DW, Frieden C. Actin polymerization. The mechanism of action of cytochalasin D. J Biol Chem. 1986;261(34):15974-80. Epub 1986/12/05. PubMed PMID: 3023337.

Schliwa M. Action of cytochalasin D on cytoskeletal networks. J Cell Biol. 1982;92(1):79-91. Epub 1982/01/01. doi: 10.1083/jcb.92.1.79. PubMed PMID: 7199055; PubMed Central PMCID: PMCPMC2112008.

Mortensen K, Larsson LI. Effects of cytochalasin D on the actin cytoskeleton: association of neoformed actin aggregates with proteins involved in signaling and endocytosis. Cell Mol Life Sci. 2003;60(5):1007-12. Epub 2003/06/27. doi: 10.1007/s00018-003-3022-x. PubMed PMID: 12827288.

Bubb MR, Spector I, Bershadsky AD, Korn ED. Swinholide A is a microfilament disrupting marine toxin that stabilizes actin dimers and severs actin filaments. J Biol Chem. 1995;270(8):3463-6. Epub 1995/02/24. doi: 10.1074/jbc.270.8.3463. PubMed PMID: 7876075.

Bubb MR, Spector I. Use of the F-actin-binding drugs, misakinolide A and swinholide A. Methods Enzymol. 1998;298:26-32. Epub 1998/09/30. doi: 10.1016/s0076-6879(98)98005-3. PubMed PMID: 9751868.

Zieve GW. Nocodazole and cytochalasin D induce tetraploidy in mammalian cells. Am J Physiol. 1984;246(1 Pt 1):C154-6. Epub 1984/01/01. doi: 10.1152/ajpcell.1984.246.1.C154. PubMed PMID: 6696055.

Moulding DA, Blundell MP, Spiller DG, White MR, Cory GO, Calle Y, et al. Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J Exp Med. 2007;204(9):2213-24. Epub 2007/08/29. doi: 10.1084/jem.20062324. PubMed PMID: 17724125; PubMed Central PMCID: PMCPMC2118706.

Kolega J. Phototoxicity and photoinactivation of blebbistatin in UV and visible light. Biochem Biophys Res Commun. 2004;320(3):1020-5. Epub 2004/07/09. doi: 10.1016/j.bbrc.2004.06.045. PubMed PMID: 15240150.

Rotman B, Papermaster BW. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proceedings of the National Academy of Sciences. 1966;55(1):134-41. doi: 10.1073/pnas.55.1.134.

Guilbault GG, Kramer DN. Lipolysis of fluorescein and eosin esters. Kinetics of hydrolysis. Analytical Biochemistry. 1966;14(1):28-40. doi: https://doi.org/10.1016/0003-2697(66)90053-4.

Arndt-Jovin DJ, Jovin TM. Analysis and sorting of living cells according to deoxyribonucleic acid content. Journal of Histochemistry & Cytochemistry. 1977;25(7):585-9. doi: 10.1177/25.7.70450. PubMed PMID: 70450.

Hudson B, Upholt WB, Devinny J, Vinograd J. The use of an ethidium analogue in the dye-buoyant density procedure for the isolation of closed circular DNA: the variation of the superhelix density of mitochondrial DNA. Proc Natl Acad Sci U S A. 1969;62(3):813-20. Epub 1969/03/01. doi: 10.1073/pnas.62.3.813. PubMed PMID: 4308095; PubMed Central PMCID: PMCPMC223671.

Krishan A. Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining. J Cell Biol. 1975;66(1):188-93. Epub 1975/07/01. doi: 10.1083/jcb.66.1.188. PubMed PMID: 49354; PubMed Central PMCID: PMCPMC2109516.

Edwards BS, Ivnitski-Steele I, Young SM, Salas VM, Sklar LA. High-throughput cytotoxicity screening by propidium iodide staining. Curr Protoc Cytom. 2007;Chapter 9:Unit9 24. Epub 2008/09/05. doi: 10.1002/0471142956.cy0924s41. PubMed PMID: 18770858.

Zhang JH, Chung TD, Oldenburg KR. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen. 1999;4(2):67-73. Epub 2000/06/06. doi: 10.1177/108705719900400206. PubMed PMID: 10838414.

Jiajia L, Shinghung M, Jiacheng Z, Jialing W, Dilin X, Shengquan H, et al. Assessment of Neuronal Viability Using Fluorescein Diacetate-Propidium Iodide Double Staining in Cerebellar Granule Neuron Culture. J Vis Exp. 2017;(123). Epub 2017/05/19. doi: 10.3791/55442. PubMed PMID: 28518109

Shinn-Thomas JH, Scranton VL, Mohler WA. Quantitative assays for cell fusion. Methods Mol Biol. 2008;475:347-61. Epub 2008/11/04. doi: 10.1007/978-1-59745-250-2_20. PubMed PMID: 18979254.

Downloads

Published

2020-09-17

How to Cite

1.
Radnai L, Stremel RF, Vaissiere T, Lin L, Cameron M, Martin WH, Rumbaugh G, Kamenecka TM, Griffin PR, Miller C. A simple and robust cell-based assay for the discovery of novel cytokinesis inhibitors. J Biol Methods [Internet]. 2020Sep.17 [cited 2021Aug.2];7(3):e136. Available from: https://jbmethods.org/jbm/article/view/335

Issue

Section

Protocols